counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in PSM4 (12)

Wednesday
Sep262018

Intel targets 5G fronthaul with a 100G CWDM4 module  

  • Intel announced at ECOC that it is sampling a 10km extended temperature range 100-gigabit CWDM4 optical module for 5G fronthaul. 
  • Another announced pluggable module pursued by Intel is the 400 Gigabit Ethernet (GbE) parallel fibre DR4 standard.
  • Intel, a backer of the CWDM8 MSA, says the 8-wavelength 400-gigabit module will not be in production before 2020.

Intel has expanded its portfolio of silicon photonics-based optical modules to address 5G mobile fronthaul and 400GbE.

Robert BlumAt the European Conference on Optical Communication (ECOC) being held in Rome this week, Intel announced it is sampling a 100-gigabit CWDM4 module in a QSFP form factor for wireless fronthaul applications.

The CWDM4 module has an extended temperature range, -20°C to +85°C, and a 10km reach.

“The final samples are available now and [the product] will go into production in the first quarter of 2019,” says Robert Blum, director of strategic marketing and business development at Intel’s silicon photonics product division.

Click to read more ...

Thursday
Mar152018

Rockley Photonics showcases its in-packaged design at OFC  

Rockley Photonics has showcased its in-packaged optics design to select customers and development partners at the OFC show being held in San Diego this week.

The packaged design includes Rockley's own 2 billion transistor layer 3 router chip, and its silicon photonics-based optical transceivers. The layer 3 router chip, described as a terabit device, also includes mixed-signal circuits needed for the optical transceevers' transmit and receive paths.

 Source: Rockley Photonics (annotated by Gazettabyte).Rockley says it is using 500m-reach PSM4 transceivers for the design and that while a dozen ribbon cables are shown, this does not mean there are 12 100-gigabit PSM4 transceivers. The company is not saying what the total optical input-output is. 

Click to read more ...

Wednesday
Nov092016

Talking markets: Oclaro on 100 gigabits and beyond  

Oclaro’s chief commercial officer, Adam Carter, discusses the 100-gigabit market, optical module trends, silicon photonics, and why this is a good time to be an optical component maker.

Oclaro has started its first quarter 2017 fiscal results as it ended fiscal year 2016 with another record quarter. The company reported revenues of $136 million in the quarter ending in September, 8 percent sequential growth and the company's fifth consecutive quarter of 7 percent or greater revenue growth.

Adam CarterA large part of Oclaro’s growth was due to strong demand for 100 gigabits across the company’s optical module and component portfolio.

The company has been supplying 100-gigabit client-side optics using the CFP, CFP2 and CFP4 pluggable form factors for a while. “What we saw in June was the first real production ramp of our CFP2-ACO [coherent] module,” says Adam Carter, chief commercial officer at Oclaro. “We have transferred all that manufacturing over to Asia now.”

Click to read more ...

Sunday
Aug212016

Intel's 100-gigabit silicon photonics move

Intel has unveiled two 100-gigabit optical modules for the data centre made using silicon photonics technology.

 

Alexis Bjorlin

The PSM4 and CWDM4/CLR4 100-gigabit modules mark the first commercial application of a hybrid integration technique for silicon photonics, dubbed heterogeneous integration, that Intel has been developing for years.

Intel's 100-gigabit module announcement follows the news that Juniper Networks has entered into an agreement to acquire start-up, Aurrion, for $165 million. Aurrion is another silicon photonics player developing this hybrid integration technology for its products. 

Click to read more ...

Thursday
Jul142016

ST makes its first PSM4 optical engine deliveries  

Flavio Benetti is upbeat about the prospects of silicon photonics. “Silicon photonics as a market is at a turning point this year,” he says.

What gives Benetti confidence is the demand he is seeing for 100-gigabit transceivers in the data centre. “From my visibility today, the tipping point is 2016,” says Benetti, group vice president and general manager, digital and mixed processes ASIC division at STMicroelectronics.

 

Flavio Benetti

Benetti and colleagues at ST have spent the last four years working to bring to market the silicon photonics technology that the chip company licensed from Luxtera.

Click to read more ...

Tuesday
Oct272015

ECOC 2015 Review - Final Part 

The second and final part of the survey of developments at the ECOC 2015 show held recently in Valencia.  

Part 2 - Client-side component and module developments   

  • The first SWDM Alliance module shown
  • More companies detail CWDM4, CLR4 and PSM4 mid-reach modules
  • 400 Gig datacom technologies showcased
  • The CFP8 MSA for 400 Gigabit Ethernet unveiled

The CFP MSA modules including the newest CFP8. Source: Finisar

  • Lumentum and Kaiam use silicon photonics for mid-reach modules
  • Finisar demonstrates a 10 km 25 Gig SFP28, and low-latency 25 Gig and 100 Gig SR4 interfaces 

 

Shortwave wavelength-division multiplexing

Finisar demonstrated the first 100 gigabit shortwave wavelength-division multiplexing (SWDM) module at ECOC. Dubbed the SWDM4, the 100 gigabit interface supports WDM over multi-mode fibre. Finisar showed a 40 version at OFC earlier this year. “This product [the SWDM4] provides the next step in that upgrade path,” says Rafik Ward, vice president of marketing at Finisar. 

Click to read more ...

Wednesday
Aug122015

Silicon photonics: "The excitement has gone"

The opinion of industry analysts regarding silicon photonics is mixed at best. More silicon photonics products are shipping but challenges remain.

 

Part 1: An analyst perspective

"The excitement has gone,” says Vladimir Kozlov, CEO of LightCounting Market Research. “Now it is the long hard work to deliver products.” 

Dale Murray, LightCounting

However, he is less concerned about recent setbacks and slippages for companies such as Intel that are developing silicon photonics products. This is to be expected, he says, as happens with all emerging technologies.

Mark Lutkowitz, principal at consultancy fibeReality, is more circumspect. “As a general rule, the more that reality sets in, the less impressive silicon photonics gets to be,” he says. “The physics is just hard; light is not naturally inclined to work on the silicon the way electronics does.”

Click to read more ...