counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in Intel (25)

Tuesday
Jun292021

Intel details its 800-gigabit DR8 optical module

The company earmarks 2023 for its first co-packaged optics product

Intel is sampling an 800-gigabit DR8 in an OSFP pluggable optical module, as announced at the recent OFC virtual conference and show.

Robert Blum“It is the first time we have done a pluggable module with 100-gigabit electrical serdes [serialisers/ deserialisers],” says Robert Blum, Intel’s senior director, marketing and new business. “The transition for the industry to 100-gigabit serdes is a big step.”

The 800-gigabit DR8 module has eight electrical 100-gigabit interfaces and eight single-mode 100-gigabit optical channels in each transmission direction.

The attraction of the single-module DR8 design, says Blum, is that it effectively comprises two 400-gigabit DR4 modules. “The optical interface allows you the flexibility that you can break it out into 400-gigabit DR4,” says Blum. “You can also do single 100-gigabit breakouts or you can do 800-gigabit-to-800-gigabit traffic.”

Click to read more ...

Tuesday
Dec152020

Ayar Labs’ TeraPhy chiplet nears volume production

Moving data between processing nodes - whether servers in a data centre or specialised computing nodes used for supercomputing and artificial intelligence (AI) - is becoming a performance bottleneck.

Workloads continue to grow yet networking isn’t keeping pace with processing hardware, resulting in the inefficient use of costly hardware.

Networking also accounts for an increasing proportion of the overall power consumed by such computing systems.

These trends explain the increasing interest in placing optics alongside chips and co-packaging the two to boost input-output (I/O) capacity and reach.

At the ECOC 2020 exhibition and conference held virtually, start-up Ayar Labs showcased its first working TeraPHY, an optical I/O chiplet, manufactured using GlobalFoundries’ 45nm silicon-photonics process.

Click to read more ...

Thursday
Mar192020

Intel combines optics to its Tofino 2 switch chip

Part 1: Co-packaged Ethernet switch 

The advent of co-packaged optics has moved a step closer with Intels demonstration of a 12.8-terabit Ethernet switch chip with optical input-output (I/O).  


Source: Intel.

The design couples a Barefoot Tofino 2 switch chip to up to 16 optical tiles’ - each tile, a 1.6-terabit silicon photonics die - for a total I/O of 25.6 terabits.

Its an easy upgrade to add our next-generation 25.6-terabit [switch chip] which is coming shortly,” says Ed Doe, Intels vice president, connectivity group, general manager, Barefoot division. 

Intel acquired switch-chip maker, Barefoot, seven months ago after which it started the co-packaging optics project.

Intel also revealed that it is in the process of qualifying four new optical transceivers - a 400Gbase-DR4, a 200-gigabit FR4, a 100-gigabit FR1 and a 100Gbase-LR4 - to add to its portfolio of 100-gigabit PSM4 and CWDM4 modules.

Click to read more ...

Friday
Jun212019

UK quantum algorithm start-up targets first opportunity 

A UK start-up developing software for quantum computers has received £3.25 million ($4.1 million) in funding. 

Riverlane, based in Cambridge, is working with leading quantum computing hardware companies as well as large corporates interested in benefiting from the technology.

The start-up will use the funding to grow the company and has already identified the most promising applications for the technology.

 

 

“A lot of people are building hardware using various technologies such as iron trap or supercomputing qubits,” says Steve Brierley, CEO of Riverlane. “What we are trying to do is make that [hardware] useful as soon as possible.” A qubit is the shorthand term for a quantum bit.

Click to read more ...

Thursday
Nov152018

Habana Labs unveils its AI processor plans  

Start-up Habana Labs has developed a chip architecture that promises to speed up the execution of machine-learning tasks. 

The Israeli start-up came out of secrecy in September to announce two artificial intelligence (AI) processor chips. One, dubbed Gaudi, is designed to tackle the training of large-scale neural networks. The chip will be available in 2019. 

Eitan MedinaGoya, the start-up’s second device, is an inference processor that implements the optimised, trained neural network.

The Goya chip is already in prospective customers’ labs undergoing evaluation, says Eitan Medina, Habana’s chief business officer.

Habana has just raised $75 million in a second round of funding, led by Intel Capital. Overall, the start-up has raised a total of $120 million in funding. 

Click to read more ...

Wednesday
Sep262018

Intel targets 5G fronthaul with a 100G CWDM4 module  

  • Intel announced at ECOC that it is sampling a 10km extended temperature range 100-gigabit CWDM4 optical module for 5G fronthaul. 
  • Another announced pluggable module pursued by Intel is the 400 Gigabit Ethernet (GbE) parallel fibre DR4 standard.
  • Intel, a backer of the CWDM8 MSA, says the 8-wavelength 400-gigabit module will not be in production before 2020.

Intel has expanded its portfolio of silicon photonics-based optical modules to address 5G mobile fronthaul and 400GbE.

Robert BlumAt the European Conference on Optical Communication (ECOC) being held in Rome this week, Intel announced it is sampling a 100-gigabit CWDM4 module in a QSFP form factor for wireless fronthaul applications.

The CWDM4 module has an extended temperature range, -20°C to +85°C, and a 10km reach.

“The final samples are available now and [the product] will go into production in the first quarter of 2019,” says Robert Blum, director of strategic marketing and business development at Intel’s silicon photonics product division.

Click to read more ...

Monday
Sep252017

The CWDM8 MSA avoids PAM-4 to fast-track 400G  

Another multi-source agreement (MSA) group has been created to speed up the market introduction of 400-gigabit client-side optical interfaces.

The CWDM8 MSA is described by its founding members as a pragmatic approach to provide 400-gigabit modules in time for the emergence of next-generation switches next year. The CWDM8 MSA was announced at the ECOC show held in Gothenburg last week.

Robert BlumThe eight-wavelength coarse wavelength-division multiplexing (CWDM) MSA is being promoted as a low-cost alternative to the IEEE 803.3bs 400 Gigabit Ethernet Task Force’s 400-gigabit eight-wavelength specifications, and less risky than the newly launched 100G Lambda MSA specifications based on four 100-gigabit wavelengths for 400 gigabit.

“The 100G Lambda has merits and we are also part of that MSA,” says Robert Blum, director of strategic marketing and business development at Intel’s silicon photonics product division. “We just feel the time to get to 100-gigabit-per-lambda is really when you get to 800 Gigabit Ethernet.”

Click to read more ...