counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in 100G Lambda MSA (4)

Friday
Oct202017

The many paths to 400 gigabits

The race is on to deliver 400-gigabit optical interfaces in time for the next-generation of data centre switches expected in late 2018.

The industry largely agrees that a four-wavelength 400-gigabit optical interface is most desirable yet alternative designs are also being developed.

Optical module makers must consider such factors as technical risk, time-to-market and cost when choosing which design to back.

Rafik Ward, FinisarUntil now, the industry has sought a consensus on interfaces, making use of such standards bodies as the IEEE to serve the telecom operators.

Now, the volumes of modules used by the internet giants are such that they dictate their own solutions. And the business case for module makers is sufficiently attractive that they are willing to comply.

Another challenge at 400 gigabits is that there is no consensus regarding what pluggable form factor to use. 

“There is probably more technical risk in 400 gigabits than any of the historical data-rate jumps we have seen,” says Rafik Ward, vice president of marketing at Finisar.

Click to read more ...

Monday
Sep252017

The CWDM8 MSA avoids PAM-4 to fast-track 400G  

Another multi-source agreement (MSA) group has been created to speed up the market introduction of 400-gigabit client-side optical interfaces.

The CWDM8 MSA is described by its founding members as a pragmatic approach to provide 400-gigabit modules in time for the emergence of next-generation switches next year. The CWDM8 MSA was announced at the ECOC show held in Gothenburg last week.

Robert BlumThe eight-wavelength coarse wavelength-division multiplexing (CWDM) MSA is being promoted as a low-cost alternative to the IEEE 803.3bs 400 Gigabit Ethernet Task Force’s 400-gigabit eight-wavelength specifications, and less risky than the newly launched 100G Lambda MSA specifications based on four 100-gigabit wavelengths for 400 gigabit.

“The 100G Lambda has merits and we are also part of that MSA,” says Robert Blum, director of strategic marketing and business development at Intel’s silicon photonics product division. “We just feel the time to get to 100-gigabit-per-lambda is really when you get to 800 Gigabit Ethernet.”

Click to read more ...

Sunday
Sep242017

MultiPhy unveils 100G single-wavelength PAM-4 chip

A chip to enable 100-gigabit single-wavelength client-side optical modules has been unveiled by MultiPhy. The 100-gigabit 4-level pulse amplitude modulation (PAM-4) circuit will also be a key building block for 400 Gigabit Ethernet interfaces that use four wavelengths.

Source: MultiPhy

Dubbed the MPF3101, the 100-gigabit physical layer (PHY) chip is aimed at such applications as connecting switches within data centres and for 5G cloud radio access network (CRAN).

“The chip has already been sent out to customers and we are heading towards market introductions,” says Avi Shabtai, CEO of MultiPhy.

Click to read more ...

Tuesday
Sep122017

New MSA to enable four-lambda 400-gigabit modules

A new 100-gigabit single-wavelength multi-source agreement (MSA) has been created to provide the industry with 2km and 10km 100-gigabit and 400-gigabit four-wavelength interfaces.

Mark NowellThe MSA is backed by 22 founding companies including Microsoft, Alibaba and Cisco Systems.

The initiative started work two months ago and a draft specification is expected before the year end.

“Twenty-two companies is a very large MSA at this stage, which shows the strong interest in this technology,” says Mark Nowell, distinguished engineer, data centre switching at Cisco Systems and co-chair of the 100G Lambda MSA. “It is clear this is going to be the workhorse technology for the industry for quite a while.”

Click to read more ...