counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in silicon photonics (58)

Thursday
Mar032016

Imec gears up for the Internet of Things economy  

Luc Van den hove is talking in the darkened ballroom in a hotel next to the brilliantly sunlit marina in Herzliya.

It is the imec's CEO's first trip to Israel and around us the room is being prepared for an afternoon of presentations the Belgium nanoelectronics research centre will give on its work in such areas as the Internet of Things and 5G wireless to an audience of Israeli start-ups and entrepreneurs.

 

Luc Van den hoveImec announced in February its plan to merge with iMinds, a Belgium research centre specialising in systems software and security, a move that will add 1,000 staff to imec's 2,500 researchers.

At first glance, the world-renown semiconductor process technology R&D centre joining forces with a systems house is a surprising move. But for Van den hove, it is a natural development as the company continues to grow from its technology origins to include systems-based research.

Click to read more ...

Thursday
Sep102015

US invests $610 million to spur integrated photonics 

The US government has set up its latest manufacturing initiative, the sixth of nine, to address photonic integrated circuits (PICs). The $610 million venture is a combination of public and private funding: $110 million from the Department of Defense, $250 million from the state of New York and the rest private contributions.

Prof. Duncan Moore

Dubbed the American Institute for Manufacturing Integrated Photonics (AIM Photonics), the venture has attracted 124 partners includes 20 universities and over 50 companies.

The manufacturing innovation institute will be based in Rochester, New York, and will be led by the Research Foundation for the State University of New York. A key goal is that the manufacturing institute will continue after the initiative is completed in early 2021.

Click to read more ...

Friday
Sep042015

Data centres to give silicon photonics its chance  

Part 4: A large data centre operator’s perspective

The scale of modern data centres and the volumes of transceivers they will use are going to have a significant impact on the optical industry. So claims Facebook, the social networking company.

Katharine Schmidtke

Facebook has been vocal in outlining the optical requirements it needs for its large data centres.

The company will use duplex single-mode fibre and has chosen the 2 km mid-reach 100 gigabit CWDM4 interface to connect its equipment.

But the company remains open regarding the photonics used inside transceivers. “Facebook is agnostic to technology,“ says Katharine Schmidtke, strategic sourcing manager, optical technology at Facebook. “There are multiple technologies that meet our requirements.” 

Click to read more ...

Thursday
Sep032015

Verizon tips silicon photonics as a key systems enabler  

Verizon's director of optical transport network architecture and design, Glenn Wellbrock, shares the operator’s thoughts regarding silicon photonics.

 

Part 3: An operator view

Glenn Wellbrock is upbeat about silicon photonics’ prospects. Challenges remain, he says, but the industry is making progress. “Fundamentally, we believe silicon photonics is a real enabler,” he says. “It is the only way to get to the densities that we want.”

 

Glenn Wellbrock

Wellbrock adds that indium phosphide-based photonic integrated circuits (PICs) can also achieve such densities.

But there are many potential silicon photonics suppliers because of its relatively low barrier to entry, unlike indium phosphide. "To date, Infinera has been the only real [indium phosphide] PIC company and they build only for their own platform,” says Wellbrock.

Click to read more ...

Wednesday
Aug122015

The quiet period of silicon photonics 

Michael Hochberg discusses his book on silicon photonics and the status of the technology. Hochberg is director of R&D at Coriant's Advanced Technology Group. Previously he has been an Associate Professor at the University of Delaware and at the National University of Singapore. He was also a director at the Optoelectronic Systems Integration in Silicon (OpSIS) foundry, and was a co-founder of silicon photonics start-up, Luxtera.

 

Part 2: An R&D perspective

If you are going to write a book on silicon photonics, you might as well make it different. That is the goal of Michael Hochberg and co-author Lukas Chrostowski, who have published a book on the topic.

Michael HochbergHochberg says there is no shortage of excellent theoretical textbooks and titles that survey the latest silicon photonics research. Instead, the authors set themselves the goal of creating a design manual to help spur a new generation of designers.

The book aims to provide designers with all the necessary tools and know-how to develop silicon photonics circuits without needing to be specialists in optics.

Click to read more ...

Wednesday
Aug122015

Silicon photonics: "The excitement has gone"

The opinion of industry analysts regarding silicon photonics is mixed at best. More silicon photonics products are shipping but challenges remain.

 

Part 1: An analyst perspective

"The excitement has gone,” says Vladimir Kozlov, CEO of LightCounting Market Research. “Now it is the long hard work to deliver products.” 

Dale Murray, LightCounting

However, he is less concerned about recent setbacks and slippages for companies such as Intel that are developing silicon photonics products. This is to be expected, he says, as happens with all emerging technologies.

Mark Lutkowitz, principal at consultancy fibeReality, is more circumspect. “As a general rule, the more that reality sets in, the less impressive silicon photonics gets to be,” he says. “The physics is just hard; light is not naturally inclined to work on the silicon the way electronics does.”

Click to read more ...

Sunday
Jun282015

Altera’s 30 billion transistor FPGA 

  • The Stratix 10 features a routing architecture that doubles overall clock speed and core performance 
  • The programmable family supports the co-packaging of transceiver chips to enable custom FPGAs  
  • The Stratix 10 family supports up to 5.5 million logic elements
  • Enhanced security features stop designs from being copied or tampered with      

Altera has detailed its most powerful FPGA family to date. Two variants of the Stratix 10 family have been announced: 10 FPGAs and 10 system-on-chip (SoC) devices that include a quad-core 64-bit architecture Cortex-A53 ARM processor alongside the programmable logic. The ARM processor can be clocked at up to 1.5 GHz.

The Stratix 10 family is implemented using Intel’s 14nm FinFET process and supports up to 5.5 million logic elements. The largest device in Altera’s 20nm Arria family of FPGAs has 1.15 million logic elements, equating to 6.4 billion transistors. “Extrapolating, this gives a figure of some 30 billion transistors for the Stratix 10,” says Craig Davis, senior product marketing manager at Altera. 

 

Altera's HyperFlex routing architecture. Shown (pointed to by the blue arrow) are the HyperFlex registers that sit at the junction of the interconnect traces. Also shown are the adaptive logic module blocks. Source: Altera.

Click to read more ...