counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in PAM-4 (30)

Wednesday
Oct142015

ECOC '15 Reflections: Part 2 

Part 2: More industry executives share the trends and highlights they noted at the recent European Conference on Optical Communication (ECOC) event, held in Valencia. 

 

Martin Zirngibl, head of network enabling components and technologies at Bell Labs. 

Silicon Photonics is seeming to gain traction, but traditional component suppliers are still betting on indium phosphide.

There are many new start-ups in silicon photonics, most seem to be going after the 100 gigabit QSFP28 market. However, silicon photonics still needs a ubiquitous high-volume application for the foundry model to be sustainable.

There is a battle between 4x25 Gig CWDM and 100 Gig PAM-4 56 gigabaud, with most people believing that 400 Gig PAM-4 or discrete multi-tone with 100 Gig per lambda will win.

 

Will coherent make it into black and white applications - up to 80 km - or is there a role for a low-cost wavelength-division multiplexing (WDM) system with direct detection?

Click to read more ...

Thursday
Sep172015

Choosing paths to future Gigabit Ethernet speeds

Industry discussions are being planned in the coming months to determine how Ethernet standards can be accelerated to better serve industry needs, including how existing work can be used to speed up the creation of new Ethernet speeds.

 

The y-axis shows the number of lanes while the x-axis is the speed per lane. Each red dot shows the Ethernet rate at which the signalling (optical or electrical) was introduced. One challenge that John D'Ambrosia highlights is handling overlapping speeds. "What do we do about 100 Gig based on 4x25, 2x50 and 1x100 and ensure interoperability, and do that for every multiple where you have a crossover?" Source: Dell

One catalyst for these discussions has been the progress made in the emerging 400 Gigabit Ethernet (GbE) standard which is now at the first specification draft stage.

“If you look at what is happening at 400 Gig, the decisions that were made there do have potential repercussions for new speeds as well as new signalling rates and technologies,” says John D’Ambrosia, chairman of the Ethernet Alliance.

Click to read more ...

Wednesday
Aug122015

Silicon photonics: "The excitement has gone"

The opinion of industry analysts regarding silicon photonics is mixed at best. More silicon photonics products are shipping but challenges remain.

 

Part 1: An analyst perspective

"The excitement has gone,” says Vladimir Kozlov, CEO of LightCounting Market Research. “Now it is the long hard work to deliver products.” 

Dale Murray, LightCounting

However, he is less concerned about recent setbacks and slippages for companies such as Intel that are developing silicon photonics products. This is to be expected, he says, as happens with all emerging technologies.

Mark Lutkowitz, principal at consultancy fibeReality, is more circumspect. “As a general rule, the more that reality sets in, the less impressive silicon photonics gets to be,” he says. “The physics is just hard; light is not naturally inclined to work on the silicon the way electronics does.”

Click to read more ...

Friday
Jul102015

IBM demos a 100 Gigabit silicon photonics transceiver

IBM has demonstrated a 100 gigabit transceiver using silicon photonics technology, its most complex design unveiled to date. The 100 gigabit design is not a product but a technology demonstrator, and IBM says it will not offer branded transceivers to the marketplace.

“It is a demonstration vehicle illustrating the complex design capabilities of the technology and the functionality of the optical and electrical components,” says Will Green, manager of IBM’s silicon integrated nano-photonics group. 

Will Green

IBM has been developing silicon photonics technology for over a decade, starting with building-block optical functions based on silicon, to its current monolithic system-on-chip technology that includes design tools, testing and packaging technologies.

Now this technology is nearing commercialisation. 

Click to read more ...

Wednesday
May202015

OFC 2015 digest: Part 2 

The second part of the survey of developments at the OFC 2015 show held recently in Los Angeles.   
 
Part 2: Client-side component and module developments   
  • CFP4- and QSFP28-based 100GBASE-LR4 announced
  • First mid-reach optics in the QSFP28
  • SFP extended to 28 Gigabit
  • 400 Gig precursors using DMT and PAM-4 modulations 
  • VCSEL roadmap promises higher speeds and greater reach

Click to read more ...

Thursday
Apr302015

COBO acts to bring optics closer to the chip 

The formation of the Consortium for On-Board Optics (COBO) highlights how, despite engineers putting high-speed optics into smaller and smaller pluggable modules, further progress in interface compactness is needed.

The goal of COBO, announced at the OFC 2015 show and backed by such companies as Microsoft, Cisco Systems, Finisar and Intel, is to develop a technology roadmap and common specifications for on-board optics to ensure interoperability.

“The Microsoft initiative is looking at the next wave of innovation as it relates to bringing optics closer to the CPU,” says Saeid Aramideh, co-founder and chief marketing and sales officer for start-up Ranovus, one of the founding members of COBO. “There are tremendous benefits for such an architecture in terms of reducing power dissipation and increasing the front panel density.”

Click to read more ...

Monday
Mar232015

MultiPhy readies 100 Gigabit serial direct-detection chip

MultiPhy is developing a chip that will support serial 100 Gigabit-per-second (Gbps) transmission using 25 Gig optical components. The device will enable short reach links within the data centre and up to 80km point-to-point links for data centre interconnect. The fabless chip company expects to have first samples of the chip, dubbed FlexPhy, by year-end.

Figure 1: A block diagram of the 100 Gig serial FlexPhy. The transmitter output is an electrical signal that is fed to the optics. Equally, the input to the receive path is an electrical signal generated by the receiver optics. Source: Gazettabyte

Click to read more ...