counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in OIF (28)

Friday
Oct232020

800G MSA defines PSM8 while eyeing 400G’s progress

A key current issue regarding data centres is forecasting the uptake of 400-gigabit optics.

If a rapid uptake of 400-gigabit optics occurs, it will also benefit the transition to 800-gigabit modules. But if the uptake of 400-gigabit optics is slower, some hyperscalers could defer and wait for 800-gigabit pluggables instead.

So says Maxim Kuschnerov, a spokesperson for the 800G Pluggable MSA (multi-source agreement).

Maxim Kuschnerov

The 800G MSA has issued its first 800-gigabit pluggable specification.

Dubbed the PSM8, the design uses the same components as 400-gigabit optics, doubling capacity in the same QSFP-DD pluggable form factor.

“Four-hundred-gigabit modules hitting volume is crucially important because the 800-gigabit specification leverages 400-gigabit components,” says Kuschnerov. “The more 400-gigabit is delayed, it impacts everything that comes after.”

Click to read more ...

Wednesday
Jun172020

OIF to double data rate with a 224G electrical interface 

  • The OIF will develop a faster electrical signalling standard 
  • The 224-gigabit standard will make optical modules sleeker 
  • It will also help data centre operators keep up with ever-growing software workloads

Nathan TracyIt was just a matter of time before the OIF started on the next electrical interface standard beyond 112 gigabits-per-second (Gbps).

There have been announcements of new 800-gigabit optical modules along with growing interest in co-packaged optics, where optical interfaces are added alongside semiconductor chips.

Nathan Tracy, TE Connectivity and OIF president, says member companies will need to be creative to develop a 224-gigabit electrical interface. Getting signals to travel at such speeds over workable distances will be a challenge.  

The project, to kick-off in August, will begin with a study phase that will help identify the interface types needed.  

Click to read more ...

Wednesday
Aug282019

Features added around 400ZR aims to bring order to 400ZR+

The OIF has started a project to combine Flexible Ethernet (FlexE) technology with the 400ZR coherent interface standard.

Karl Gass400ZR is designed to transmit a 400 Gigabit Ethernet (GbE) signal over at least 80km using coherent optical transmission.

Adding FlexE technology will enable 4x100GbE signals to also be transmitted.

Separately, the OIF has started a project to create a 96 gigabaud (GBd) coherent driver modulator specification. Such a symbol rate enables 800 gigabits of data to be sent using a single carrier.

Click to read more ...

Tuesday
Aug292017

COBO targets year-end to complete specification

Part 3: 400-gigabit on-board optics

  • COBO will support 400-gigabit and 800-gigabit interfaces 
  • Three classes of module have been defined, the largest supporting at least 17.5W 

The Consortium for On-board Optics (COBO) is scheduled to complete its module specification this year.

A draft specification defining the mechanical aspects of the embedded optics - the dimensions, connector and electrical interface - is already being reviewed by the consortium’s members.

Brad Booth“The draft specification encompasses what we will do inside the data centre and what will work for the coherent market,” says Brad Booth, chair of COBO and principal network architect for Microsoft’s Azure Infrastructure.

COBO was established in 2015 to create an embedded optics multi-source agreement (MSA). On-board optics have long been available but until now these have been proprietary solutions. 

“Our goal [with COBO] was to get past that proprietary aspect,” says Booth. “That is its true value - it can be used for optical backplane or for optical interconnect and now designers will have a standard to build to.” 

Click to read more ...

Tuesday
Mar072017

Stitching together disaggregated chips

The Optical Internetworking Forum (OIF) has begun work on a 112-gigabit electrical interface to connect chips in a multi-chip module.

The ultra-short-reach electrical interface for multi-chip modules adds to the OIF's ongoing CEI-112G project, started in August 2016, to develop a 112 gigabit-per-second (Gbps) serial electrical interface for next-generation optical modules. 

Source: Gazettabyte, OIF data. The year 2018 is an estimate.

Click to read more ...

Sunday
Jul242016

OIF starts work on a terabit-plus CFP8-ACO module

The Optical Internetworking Forum (OIF) has started a new analogue coherent optics (ACO) specification based on the CFP8 pluggable module.

The CFP8 is the latest is a series of optical modules specified by the CFP Multi-Source Agreement and will support the emerging 400 Gigabit Ethernet standard.

 

Karl GassAn ACO module used for optical transport integrates the optics and driver electronics while the accompanying coherent DSP-ASIC residing on the line card.

Systems vendors can thus use their own DSP-ASIC, or a merchant one if they don’t have an in-house design, while choosing the coherent optics from various module makers. The optics and the DSP-ASIC communicate via a high-speed electrical connector on the line card.

Click to read more ...

Tuesday
Mar012016

OIF document aims to spur line-side innovation

The Optical Internetworking Forum (OIF) has completed defining the CFP2-ACO (analogue coherent optics) module, used for coherent-based optical transmission. The industry body's CFP2-ACO Implementation Agreement document has been developed to help optical component vendors bring innovative line-side products to market more quickly.

 

The CFP2-ACO. Source: OIF

The pluggable CFP2-ACO houses the coherent optics, known as the analogue front end. The components include the tuneable lasers, modulation, coherent receiver, and the associated electronics - the drivers and the trans-impedance amplifier. The Implementation Agreement also includes the CFP2-ACO's high-speed electrical interface connecting the optics to the coherent DSP chip that sits on the line card.

Click to read more ...