counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in CW-WDM MSA (3)

Thursday
Jul072022

Intel adds multi-channel lasers to its silicon photonics toolbox  

Intel has developed an 8-lane parallel-wavelength laser array to tackle the growing challenge of feeding data to integrated circuits (ICs). 

Haisheng Rong

Optical input-output (I/O) promises to solve the challenge of getting data into and out of high-end silicon devices. 

These ICs include Ethernet switch chips and 'XPUs', shorthand for processors (CPUs), graphics processing units (GPUs) and data processor units (DPUs).

The laser array is Intel's latest addition to its library of silicon photonics devices. 

Click to read more ...

Thursday
Sep232021

The future of optical I/O is more parallel links

Chris Cole has a lofty vantage point regarding how optical interfaces will likely evolve.

As well as being an adviser to the firm II-VI, Cole is Chair of the Continuous Wave-Wavelength Division Multiplexing (CW-WDM) multi-source agreement (MSA). 

Chris Cole

The CW-WDM MSA recently published its first specification document defining the wavelength grids for emerging applications that require eight, 16 or even 32 optical channels.

And if that wasn’t enough, Cole is also the Co-Chair of the OSFP MSA, which will standardise the OSFP-XD (XD standing for extra dense) 1.6-terabit pluggable form factor that will initially use 16, 100 gigabits-per-second (Gbps) electrical lanes. And when 200Gbps electrical input-output (I/O) technology is developed, OSFP-XD will become a 3.2-terabit module. 

Directly interfacing with 100Gbps ASIC serialiser/ deserialiser (serdes) lanes means the 1.6-terabit module can support 51.2-terabit single rack unit (1RU) Ethernet switches without needing 200Gbps ASIC serdes required by eight-lane modules like the OSFP.

“You might argue that it [the OSFP-XD] is just postponing what the CW-WDM MSA is doing,” says Cole. “But I’d argue the opposite: if you fundamentally want to solve problems, you have to go parallel.”

Click to read more ...

Wednesday
Aug182021

Turning to optical I/O to open up computing pinch points 

Getting data in and out of chips used for modern computing has become a key challenge for designers.

Hugo Saleh

A chip may talk to a neighbouring device in the same platform or to a chip across the data centre.

The sheer quantity of data and the reaches involved - tens or hundreds of meters - is why the industry is turning to optical for a chip’s input-output (I/O).

It is this technology transition that excites Ayar Labs.

The US start-up showcased its latest TeraPHY optical I/O chiplet operating at 1 terabit-per-second (Tbps) during the OFC virtual conference and exhibition held in June.

Click to read more ...