counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in Bailly (2)

Tuesday
Aug162022

Broadcom samples the first 51.2-terabit switch chip

  • Broadcom's Tomahawk 5 marks the era of the 51.2-terabit switch chip
  • The 5nm CMOS device consumes less than 500W
  • The Tomahawk 5 uses 512, 100-gigabit PAM-4 (4-level pulse amplitude modulation) serdes (serialisers-deserialisers)
  • Broadcom will offer a co-packaged version combining the chip with eight 6.4 terabit-per-second (Tbps) optical engines

Part 1: Broadcom's Tomahawk 5

Broadcom is sampling the world's first 51.2-terabit switch chip.

With the Tomahawk 5, Broadcom continues to double switch silicon capacity every 24 months; Broadcom launched the first 3.2-terabit Tomahawk was launched in September 2014.

"Broadcom is once again first to market at 51.2Tbps," says Bob Wheeler, principal analyst at Wheeler's Network. "It continues to execute, while competitors have struggled to deliver multiple generations in a timely manner."

Click to read more ...

Tuesday
Apr272021

Broadcom discusses its co-packaged optics plans

If electrical interfaces are becoming an impediment, is co-packaged optics the answer? Broadcom certainly thinks so.

One reason for the growing interest in co-packaged optics is the input-output (I/O) demands of switch chips. If the packet processing capacity of such chips is doubling every two years, their I/O must double too.

Alexis BjörlinRepeatedly doubling the data throughput of a switch chip is a challenge.

Each new generation of switch chip must either double the number of serialiser-deserialiser (serdes) circuits or double their speed.

A higher serdes count - the latest 25.6-terabit switch ICs have 256, 100 gigabit-per-second serdes - requires more silicon area while both approaches - a higher count and higher speed - increase the chip's power consumption.

Faster electrical interfaces also complicate the system design since moving the data between the chip and the optical modules on the switch's front panel becomes more challenging.

Click to read more ...