Acacia unveils its 400G coherent module portfolio

Tom Williams, vice president of marketing at Acacia.

Acacia Communications has unveiled a full portfolio of 400-gigabit coherent optics and has provided test samples to customers, one being Arista Networks.

Delivering a complete set of modules offers a comprehensive approach to address the next phase of coherent optics, the company says.

The 400-gigabit coherent designs detailed by Acacia are implemented using the QSFP-DD, OSFP and CFP2 pluggable form factors.

Collectively, the pluggables support three performance categories: the 400ZR standard, OpenZR+ that is backed by several companies, and the coherent optics specification used for the Open ROADM multi-source agreement (MSA)

OIF-defined 400ZR standard designed for hyperscalers

These are challenging specifications,” says Tom Williams, vice president of marketing at Acacia. Even the 400ZR, where the objective has been to simplify the requirements.” 

400ZR and OpenZR+

The OIF-defined 400ZR standard is designed for hyperscalers to enable the connection of switches or routers in data centres up to 120km apart.

The 400ZR standard takes in a 400 Gigabit Ethernet (GbE) client signal and outputs a 400-gigabit coherent signal for optical transmission.

Hyperscaler customers want a limited subset of performance [with the ZR] because they dont want to introduce operational complexity,” says Williams.   

Acacia is implementing the 400ZR standard with two module offerings: the QSFP-DD and the OSFP.

Acacia is also a founding member of OpenZR+, the industry initiative that supports both 400ZR and extended optical performance modes. The other OpenZR+ members are NEL, Fujitsu Optical Components, Lumentum, Juniper Networks and Cisco Systems which is in the process of acquiring Acacia.

OpenZR+ supports 100GbE and its multiples (200GbE and 300GbE) input signals, not just 400GbE as used for ZR. To transmit the 200- 300- and 400GbE client signals, OpenZR+ uses quadrature phase-shift keying (QPSK), 8-ary quadrature amplitude modulation (8-QAM), and 16-QAM, respectively.

OpenZR+ also employs an enhanced forward-error correction (oFEC) used for the Open ROADM specification and delivers improved dispersion compensation performance.

OpenZR+ is not just about going further but also being able to offer more functionality than 400ZR,” says Williams. 

Acacia is implementing OpenZR+ using the QSFP-DD and OSFP form factors.

Open ROADM 

The Open ROADM specification is the most demanding of the three modes and is targeted for use by the telecom operators. Here, a CFP2-DCO module is used due to its greater power envelope. And while the Open ROADM optics is aimed at telcos, the CFP2-DCO also supports OpenZR+ and 400ZR modes.

The telcos are not as focussed on [face plate] density,” says Williams. The CFP2-DCO has a higher output and is not limited to just Ethernet but also multiplexed client signals and OTN.”

Since line cards already use CFP2-DCO modules, the Open ROADM module enables a system upgrade. Existing line cards using the 200-gigabit CFP2-DCO may not support 400GbE client signals but with the Open ROADM CFP2s higher symbol rate, it offers enhanced reach performance. 

This is because the Open ROADM CFP2-DCO uses a 64 gigabaud (GBd) symbol rate enabling a 200-gigabit signal to be transmitted using QPSK modulation. In contrast, 32GBd is used for the existing 200-gigabit CFP2-DCOs requiring 16-QAM. Using QPSK rather than 16-QAM enables better signal recovery.

There is also an interoperability advantage to the new CFP2-DCO in that its 200-gigabit mode is compliant with the CableLabs specification.

All three designs – 400ZR, OpenZR+ and Open ROADM – use Acacias latest 7nm CMOS Greylock low-power coherent digital signal processor (DSP).  

This is the companys third-generation low-power DSP following on from its Sky and Meru DSPs. The Meru DSP is used in existing 32GBd 100/ 200-gigabit CFP2-DCOs.

3D stacking

Acacia has spent the last year and a half focusing on packaging, using techniques from the semiconductor industry to ensure the pluggable form factors can be made in volume.

The higher baud rate used for the 400-gigabit coherent modules means that the electronic ICs and the optics need to be closely coupled. Moving up the baud rate means that the interconnection between the [modulator] driver [chip] and the modulator can become a limiting factor,” says Williams.

Acacia is not detailing the 3D design except to say that the Greylock DSP, its silicon-photonics photonic integrated circuit (PIC), and the modulator driver and trans-impedance amplifier (TIA) are all assembled into one package using chip-stacking techniques. The chip is then mounted onto a printed circuit board much like a BGA chip, resulting in a more scalable process, says Acacia. 

We have taken the DSP and optics and turned that into an electronic component,” says Williams. Ultimately, we believe it will lead to improvements in reliability using this volume-repeatable process.”  

Acacia says its modules will undergo qualification during most of this year after which production will ramp.

No one module design will be prioritised, says Williams: There are a lot of benefits of doing all three, leveraging a lot of common elements.” 


The era of 400G coherent pluggables finally emerges

Pranay Aiya

Part 1: 7nm coherent DSPs, ZR and ZR+

The era of 400-gigabit coherent pluggable modules has moved a step closer with Inphis announcement of its Canopus coherent digital signal processor (DSP) and its QSFP-DD ColorZ II optical module.

NeoPhotonics has also entered the fray, delivering first samples of its 400-gigabit ClearLight CFP2-DCO module that uses the Canopus DSP.

The ColorZ II and ClearLight modules support the 400ZR OIF standard used to link data centres up to 120km apart. They also support extended modes, known as ZR+, that is not standardised.

ZR+’s modes include 400 Gigabit-per-second (Gbps) over distances greater than 400ZR’s 120km and lower data rates over metro-regional and long-haul distances.

The announcements of the Canopus DSP and 400-gigabit pluggable coherent modules highlight the approaches being taken for ZR+. Optical module vendors are aligning around particular merchant DSPs such that interoperability exists but only within each camp.

The first camp involves Inphi and three other module vendors, one being NeoPhotonics. The second camp is based on the OpenZR+ specification that offers interoperability between the DSPs of the merchant players, Acacia Communications and NTT Electronics (NEL). Cisco is in the process of acquiring Acacia.

Market analysts, however, warn that such partial interoperability for ZR+ harms the overall market opportunity for coherent pluggables.

ZR+ should be interoperable like ZR, and come along with the hard decisions the ZR standard required,” says Andrew Schmitt, founder and directing analyst at research form, Cignal AI.

 

Andrew Schmitt, founder and directing analyst at research form, Cignal AI.

The optical module vendors counter that only with specialist designs – designs that are multi-sourced – can the potential of a coherent DSP be exploited.

Applications 

The advent of 400-gigabit coherent optics within compact client-side form factors is a notable development, says Inphi. The industry has been waiting for this inflextion point of having, for the first time, 400-gigabit coherent pluggables that go on router and switch interfaces,” says Pranay Aiya, vice president of product marketing and applications engineering at Inphi.

IP over DWDM has never happened; we have all heard about it till the cows come home,” says Aiya.

IP-over-DWDM failed to take off because of the power and space demands of coherent optics, especially when router and switch card slots come at a premium. Using coherent optics on such platforms meant trading off client-side faceplate capacity to fit bulkier coherent optics. This is no longer the case with the advent of QSFP-DD and OSFP coherent modules.

If you look at the reasons why IP-over-DWDM  – coloured optics directly on routers – failed, all of those reasons have changed,” says Schmitt. The industry is moving to open line systems, open network management, and more modular network design.

All of the traffic is IP and layer-1 switching and grooming isnt just unnecessary, it is more expensive than low-feature layer-2 switching,” says Schmitt, adding that operators will use pluggables wherever the lower performance is acceptable. Moreover, this performance gap will narrow with time.

The Canopus DSP also supports ZR+ optical performance and, when used within a CFP2-DCO module with its greater power enveloped than OSFP and QSFP-DD, enables metro and long-haul distances, as required by the telecom operators. This is what Neophotonics has announced with its ClearLight CFP2-DCO module.

Source: Inphi, Gazettabyte

Canopus

Inphi announced the Canopus DSP last November and revealed a month later that it was sampling its first optical module, the ColorZ II, that uses the Canopus DSP. The ColorZ II is a QSFP-DD pluggable module that supports 400ZR as well as the ZR+ extended modes.

Inphi says that, given the investment required to develop the 7nm CMOS Canopus, it had to address the bulk of the coherent market.

We were not going after the ultra-long-haul and submarine markets but we wanted pluggables to address 80-90 per cent of the market,” says Aiya.

This meant developing a chip that would support the OIFs 400ZR, 200-gigabit using quadrature phased-shift keying (QPSK) modulation for long haul, and deliver 400-gigabit over 500-600km.

The Canopus DSP also supports probabilistic constellation shaping (PCS), a technology that until now has been confined to the high-end coherent DSPs developed by the leading optical systems vendors.

With probabilistic shaping, not all the constellation points are used. Instead, those  with lower energy are favoured; points closer to the origin on a constellation graph. The only time all the constellation points are used is when sending the maximum data rate for a given modulation scheme.

Choosing the inner, lower-energy constellation points more frequently than the outer points to send data reduces the average energy and improves the signal-to-noise ratio. To understand why, the symbol error rate at the receiver is dominated by the distance between neighbouring points on the constellation. Reducing the average energy keeps the distance between the points the same, but since a constant signal power level is used for DWDM transmission, applying gain increases the distance between the constellation points. The result is improved optical performance.

Probabilistic shaping also allows an exact number of bits-per-symbol to be sent, even non-integer values.

Vladimir Kozlov

For example, using standard modulation schemes such as 64-QAM with no constellation shaping, 6 bits-per-symbol are sent. Using shaping and being selective as to which constellation points are used, 5.7 bits-per-symbol could be sent, for example. This enables finer control of the sent data, enabling operators to squeeze the maximum data rate to suit the margins on a given fibre link.

This is the first time a DSP with probabilistic shaping has been available in a size and power that enables pluggables,” says Aiya.

The resulting optical performance using the Canopus is up to 1,500km at 300Gbps signals and up to 2,000km for 200Gbps transmissions (see Table above). As for baud rates, the DSP ranges from 30+ to the mid-60s Gigabaud.

Inphi also claims a 75 per cent reduction in power consumption of the Canopus compared to 16nm CMOS DSPs found in larger, 4×5-inch modules.

Several factors account for the sharp power reduction: the design of the chips architecture and physical layout, and the use of 7nm CMOS. The Canopus uses functional blocks that extend the reach, and these can be turned off to reduce the power consumption when lower optical performance is acceptable.

The architectural improvements and the physical layout account for half of the overall power savings, says Aiya, with the rest coming from using a 7nm CMOS.

The result is a DSP a third the size of 16nm DSPs. It [pluggables] requires the DSP to be very small; its not a paperweight anymore,” says Aiya.

400ZR and ZR+

The main challenge for the merchant coherent DSP camps is the several, much larger 400ZR eco-systems from Ciena, Cisco and Huawei.

“Each one of these eco-systems will be larger than the total merchant market of 400ZR,” says Vladimir Kozlov, CEO and founder of LightCounting. The system vendors will make sure that their products offer something extra if plugged into their equipment while maintaining interoperability. “This could be some simple AI-like features monitoring the link performance and warning customers of poor operation of devices on the other side of the link if these are made by another supplier,” says Kozlov.

LightCounting says that ZR+ units will be half to a third of the the number of 400ZR units shipped. However, each ZR+ module will command a higher selling price.

Regarding the ZR+ camps, one standardisation effort is OpenZR+ that adopts the forward-error correction (oFEC) scheme of the OpenROADM MSA, supports multiplexing of 100 Gigabit Ethernet (GbE) and 200GbE client signals, and different line rates – 100-400Gbps – to achieve greater reaches.

The backers of OpenZR+ include the two merchant DSP vendors, Acacia and NEL, as well as Fujitsu Optical Components, Lumentum, and Juniper Networks.

The second ZR+ camp includes four module-makers that are adopting the Canopus: Inphi, Molex Optoelectronics, NeoPhotonics and an unnamed fourth company. According to Schmitt, the unnamed module maker is II-VI. II-VI declined to comment when asked to confirm.

Schmitt argues that ZR+ should be interoperable, just like 400ZR. I think NEL, Acacia, and Inphi should have an offsite and figure this out,” he says. These three companies are in a position to nail down the specs and create a large, disruptive coherent pluggable market.”

Simon Stanley

Simon Stanley, founder and principal consultant at Earlswood Marketing Limited, expects several ZR+ solutions to emerge but that the industry will settle on a common approach. You will initially see both ZR+ and OpenZR+,” says Stanley. ZR+ will be specific to each operator but over time I expect OpenZR+ or something similar to become the standard solution.”

But the optical vendors stress the importance of offering differentiated designs to exploit the coherent DSP’s full potential. And maximising a module’s optical performance is something operators want.

We are all for standards where it makes sense and where customers want it,” says Inphis Aiya. But for customers that require the best performance, we are going to offer them an ecosystem around this DSP.”

It is always a trade-off,” adds Ferris Lipscomb, vice president of marketing at NeoPhotonics. More specialised designs that aren’t interoperable can squeeze more performance out; interoperable has to be the lowest common denominator.”

Next-generation merchant DSPs

The next stage in coherent merchant DSP development is to use a 5nm CMOS process, says Inphi. Such a state-of-the-art [CMOS] process will be needed to double capacity again while keeping the power consumption constant.

The optical performance of a 5nm coherent DSP in a pluggable will approach the high-end coherent designs. It [the optical performance of the two categories] is converging,” says Aiya.

However, demand for such a device supporting 800 gigabits will take time to develop. Several years have passed for demand for 400-gigabit client-side optics to ramp and there will be a delay before telecom operators need 400-gigabit wavelengths in volume, says Inphi.

LightCounting points out that it will take Inphi and its ecosystem of suppliers at least a year to debug their products and demonstrate interoperability.

“And keep in mind that we are talking about the industry that is changing very slowly,” concludes Kozlov.

Ferris Lipscomb, vice president of marketing at NeoPhotonics

Oclaro uses Acacia’s Meru DSP for its CFP2-DCO

Oclaro will use Acacia Communications’ coherent DSP for its pluggable CFP2 Digital Coherent Optics (CFP2-DCO) module. The module will be compatible with Acacia’s own CFP2-DCO, effectively offering customers a second source. 

Tom Williams This is the first time Acacia is making its coherent DSP technology available to a fellow module maker, says Tom Williams, Acacia’s senior director, marketing.

Acacia benefits from the deal by expanding the market for its technology, while Oclaro gains access to a leading low-power coherent DSP, the Meru, and can bring to market its own CFP2-DCO product. 

Williams says the move was encouraged by customers and that having a second source and achieving interoperability will drive CFP2-DCO market adoption. That said, Acacia is not looking for further module partners. “With two strong suppliers, we don’t see a need to add additional ones,” says Williams.  

“This agreement is a sign that the market is reaching maturity, with suppliers transitioning from grabbing market share at all costs to more rational strategies,” says Vladimir Kozlov, CEO and founder of LightCounting Market Research.

 

CFP2-DCO

The CFP2-DCO is a dense wavelength-division multiplexing module that supports 100-gigabit and 200-gigabit data rates.

With the CFP2-DCO design, the coherent DSP sits within the module, unlike the CFP2 Analog Coherent Optics (CFP2-ACO) where the DSP chip is external, residing on the line card. 

According to Kevin Affolter, Oclaro’s vice president strategic marketing, the company looked at several merchant and non-merchant coherent DSPs but chose the Meru due to its low power consumption and its support for 200 gigabits using 8-ary quadrature amplitude modulation (8-QAM) as well as the 16-QAM scheme. Using 8-QAM extends the optical reach of 200-gigabit wavelengths.

 

This agreement is a sign that the market is reaching maturity, with suppliers transitioning from grabbing market share at all costs to more rational strategies

 

At 100 gigabits the CFP2-DCO achieves long-haul distances of 2,000km whereas at 200 gigabit at 8-QAM, the reach is in excess of 1,000km. The 8-QAM requires a wider passband than the 16-QAM, however, such that in certain metro networks where the signal passes through several ROADM stages, it is better to use the 16-QAM mode, says Acacia.

 

Source: Acacia, Gazettabyte

Oclaro’s design will combine the Meru with its indium phosphide-based optics whereas Acacia’s CFP2-DCO uses silicon photonics technology. The power consumption of the CFP2-DCO module is of the order of 20W.

The two companies say their CFP2-DCO modules will be compatible with the multi-source agreement for open reconfigurable add-drop multiplexers (ROADMs). The Open ROADM MSA is backed by 16 companies, eight of which are operators. The standard currently only defines 100-gigabit transmission based on a hard-decision forward-error correction. 

“There are several carriers, AT&T being the most prominent, within Open ROADM,” says Affolter. “It makes sense for both companies to make sure the needs of Open ROADM are addressed.” 

 

Coherent shift 

In 2017, Oclaro was one of three optical module companies that signed an agreement with Ciena to use the systems vendor’s WaveLogic Ai coherent DSP to develop a 400-gigabit transponder.    

Kevin Affolter

Affolter says the Ciena and Acacia agreements should be seen as distinct; the 400-gigabit design is a large, 5x7-inch non-pluggable module designed for maximum reach and capacity. “The deals are complementary and this announcement has no impact on the Ciena announcement,” says Affolter.

Does the offering of proprietary DSPs to module makers suggest a shift in coherent that has always been seen as a strategic technology that allows for differentiation? 

Affolter thinks not. “There are several vertically integrated vendors with their own DSPs that will continue to leverage their investment as much as they can,” he says. “But there is also an evolution of end customers and network equipment manufacturers that are moving to more pluggable solutions and that is where the -DCO really plays.”          

Oclaro expects to have first samples of its CFP2-DCO by year-end. Meanwhile, Acacia’s CFP2-DCO has been generally available for over six months.


Acacia announces a 1.2 terabit coherent module

Acacia Communications has given first details of its AC1200 coherent optical module, capable of transmitting up to 1.2 terabits of data. The custom coherent transceiver is being aimed at applications ranging from linking data centres to long-haul and even sub-sea transmissions and was announced at the recent ECOC show held in Gothenburg.

Channel capacity and link margin can be maximised by using the fractional QAM scheme. Source: Acacia.

The company is facing increasing market competition. Ciena has teamed up with Lumentum, NeoPhotonics, and Oclaro, sharing its high-end coherent DSP expertise with the three optical module makers. Meanwhile, Inphi has started sampling its 16nm CMOS M200, a 100- and 200-gigabit coherent DSP suitable for CFP2-ACO, CFP-DCO, and CFP2-DCO module designs.

The AC1200 is Acacia’s response, extending its high-end module offering beyond a terabit to compete with the in-house system vendors and preserve its performance lead against the optical module makers.

 

Enhanced coherent techniques

The AC1200 has an architecture similar to the company’s AC400 5x7-inch 400-gigabit module announced in 2015. Like the earlier module, the AC1200 features a dual-core coherent DSP and two silicon photonics transceiver chips. But the AC1200 uses a much more sophisticated DSP - the 16nm CMOS Pico device announced earlier this year - capable of supporting such techniques as variable baud rate, advanced modulation and coding schemes so that the bits per symbol can be fine-tuned, and enhanced soft-decision forward error correction (SD-FEC). The AC400 uses the 1.3 billion transistor Denali dual-core DSP while the Pico DSP has more than 2.5 billion transistors.

The result is a two-wavelength module design, each wavelength supporting from 100-600 gigabits in 50-gigabit increments.

Acacia is able to triple the module’s capacity to 1.2 terabits by incorporating a variable baud rate up to at least 69 gigabaud (Gbaud). This doubles the capacity per wavelength compared to the AC400 module. The company also uses more modulation formats including 64-ary quadrature amplitude modulation (64-QAM), boosting capacity a further 1.5x compared to the AC400’s 16-QAM.

Acacia has not detailed the module’s dimensions but says it is a custom design some 40 percent smaller in area than a 5x7-inch module. Nor will it disclose the connector type and electrical interface used to enable the 1.2-terabit throughput. However, the AC1200 will likely support 50 gigabit-per-second (Gbps) 4-level pulse-amplitude modulation (PAM-4) electrical signals as it will interface to 400-gigabit client-side modules such as the QSFP-DD.

The AC1200’s tunable baud rate range is around 35Gbaud to 69Gbaud. “The clock design and the optics could truly be continuous and it [the baud rate] pairs with a matrix of modulation formats to define a certain resolution,” says Tom Williams, senior director of marketing at Acacia Communications. Whereas several of the system vendors’ current in-house coherent DSPs use two baud rates such as 33 and 45Gbaud, or 35 and 56Gbaud, Acacia says it uses many more rates than just two or three.

The result is that at the extremes, the module can deliver from 100 gigabits (a single wavelength at some 34Gbaud and quadrature phase-shift keying - QPSK) to 1.2 terabits (using two wavelengths, each 64-QAM at around 69Gbaud).

The module also employs what Acacia refers to as very fine resolution QAM constellations. The scheme enables the number of bits per symbol to be set to any value and not be limited to integer bits. Acacia is not saying how it is implementing this but says the end result is similar to probabilistic shaping. “Instead of 2 or 3 bits-per-symbol, you can be at 2.5 or 2.7 bits-per-symbol,” says Williams. The performance benefits include maximising the link margin and the capacity transmitted over a given link. (See diagram, top.) 

The SD-FEC has also been strengthened to achieve a higher coding gain while still being a relatively low-power implementation.

Using a higher baud rate allows a lower order modulation scheme to be used. This can more than double the reach. Source: Acacia

The company says it is restricted in detailing the AC1200’s exact performance. “Because we are a merchant supplier selling into system vendors that do the link implementations, we have to be careful about the reach expectations we set,” says Williams. But the combination of fractional QAM, a tunable baud rate, and improved FEC means a longer reach for a given capacity. And the capacity can be tuned in 50-gigabit increments. 

 

Platforms and status

ADVA Optical Networking is one vendor that has said it is using Acacia’s 1.2-terabit design for its Teraflex product, the latest addition to its CloudConnect family of data centre interconnect products.

Is ADVA Optical Networking using the AC1200? “Our TeraFlex data centre interconnect product uses a coherent engine specifically developed to meet the performance expectations that our customers demand,” says ADVA's spokesperson.

Teraflex is a one-rack-unit (1RU) stackable chassis that supports three hot-pluggable 1.2-terabit ‘sleds’. Each sled’s front panel supports various client-side interface module options: 12 x 100-gigabit QSFP28s, 3 x 400-gigabit QSFP-DDs and lower speed 10-gigabit and 40-gigabit modules using ADVA Optical Networking’s MicroMux technology.

Samples of the AC1200 module will be available in the first half of 2018, says Acacia. General availability will likely follow a quarter or two later. 


TIP seeks to shake up the telecom marketplace

The telecom industry has long recognised the benefits of the Internet content providers' data-centre work practices. It has led to the operators starting to embrace software-defined networking (SDN) and network function virtualisation (NFV) technology whereby telecom functions that previously required custom hardware are executed as software on servers.

 Niall Robinson

Now, ten telcos, systems vendors, component and other players have joined Facebook as part of the Telecom Infra Project, or TIP, to bring the benefits of open-source design and white-box platforms to telecoms. TIP has over 300 members and has seven ongoing projects across three network segments of focus: access, backhaul, and core and management. 

Facebook's involvement in a telecoms project is to benefit its business. The social media giant has 1.79 billion active monthly users and wants to make Internet access more broadly available. Facebook also has demanding networking requirements, both the linking of its data centres and supporting growing video traffic. It also wants better networks to support emerging services using technologies such as virtual reality headsets.

 

It is time to disrupt this closed market; it is time to reinvent everything we have today

 

The telecom operators want to collaborate with Facebook having seen how its Open Compute Project has created flexible, scalable equipment for the data centre. The operators also want to shake up the telecom industry. At the inaugural TIP summit held in November, the TIP chairman and CTO of SK Telecom, Alex Jinsung Choi, discussed how the scale and complexity of telecom networks make it hard for innovators and start-ups to enter the market. “It is time to disrupt this closed market; it is time to reinvent everything we have today,” said Choi during his TIP Summit talk.

 

Voyager

TIP unveiled a white-box packet optical platform dubbed Voyager at the summit. The one rack-unit (1RU) box is a project for backhaul. Voyager has been designed by Facebook and the platform’s specification has been made available to TIP.

Voyager is based on another platform Facebook has developed: the Wedge top-of-rack switch for the data centre. Wedge switches are now being made by several contract manufacturers. Each can be customised based on the operating system used and the applications loaded onboard. The goal is to adopt a similar approach with Voyager.

“Eventually, there will be something that is definitely market competitive in terms of hardware cost,” says Niall Robinson, vice president, global business development at ADVA Optical Networking, one of the companies involved in the Voyager initiative. “And you have got an open-source community developing a feature set from a software perspective.”

Other companies backing Voyager include Acacia Communications, Broadcom and Lumentum which are involved in the platform’s hardware design. Snaproute is delivering the software inside the box while first units are being made by the contract manufacturer, Celestica.

ADVA Optical Networking’s will provide a sales channel for Voyager and is interfacing it to its network management system. The system vendor will also provide services and software support. Coriant is another systems vendor backing the project. It is providing networking support including routeing and switching as well as dense WDM transmission capabilities.

 

This [initiative] has shown me that the whole supply and design chains for transport can be opened up; I find that fascinating.

 

Robinson describes TIP as one of the most ambitious and creative projects he has been involved in. “It is less around the design of the box," he says. "It is the shaking up of the ecosystem, that is what TIP is about.” 

A 25-year involvement in transport has given Robinson an ingrained view that it is different to other aspects of telecom. For example, a vendor’s transport system must be at each end of the link due to the custom nature of platforms that are designed to squeeze maximum performance over a link. “In some cases, transport is different but what TIP maybe realises is that transport does not always have to be different,” says Robinson. “This [initiative] has shown me that the whole supply and design chains for transport can be opened up; I find that fascinating.”      

 

Specification

At the core of the 1RU Voyager is the Broadcom StrataXGS Tomahawk. The 3.2-terabit switch chip is also the basis of the Wedge top-of-rack switch. The Tomahawk features 128 x 25 gigabit-per-second (Gbps) serdes to enable 32 x 100 gigabit ports, and supports layer-2 switching and layer-3 routeing.

Voyager uses 12, 100 Gigabit Ethernet client-side pluggable interfaces and four 200-gigabit networking interfaces based on Acacia’s AC-400 optical module. The AC-400 uses coherent optics and supports polarisation multiplexing, 16 quadrature amplitude modulation (PM-16QAM).  “If it was a pure transport box the input rate would equal the output rate but because it is a packet box, you can take advantage of layer 2 over-subscription,” says Robinson. 

At layer-3 the total routeing capacity is 2 terabits, the sum of the client and network interfaces. “At layer-3, the Tomahawk chip does not know what is a client port and what is a networking port; they are just Ethernet ports on that device,” says Robinson.

ADVA Optical Networking chose to back Voyager because it does not have a packet optical platform in its product portfolio. Until now, it has partnered with Juniper Networks and Arista Networks when such functionality has been needed. “We are chasing certain customers that are interested in Voyager,” says Robinson. “We are enabling ourselves to play in the packet optical space with a self-contained box.”  

 

Status and roadmap

The Voyager is currently in beta-prototype status and has already been tested in trials. Equinix has tested the box working with Lumentum’s open line system over 140km of fiber, while operator MTN has also tested Voyager.

The platform is expected to be generally available in March or April 2017, by when ADVA Optical Networking will have completed the integration of Voyager with its network management system.

Robinson says there are two ways Voyager could develop.

Source: Gazettabyte

One direction is to increase the interface and switching capacities of the 1RU box. Next-generation coherent digital signal processors that support higher baud rates will enable 400Gbps and even 600Gbps wavelengths using PM-64QAM. This could enable the line-side capacity to increase from the current 800Gbps to 2 or 3 terabits. And soon, 400Gbps client-side pluggable modules will become available. Equally, Broadcom is already sampling its next-generation Tomahawk II chip that has 6.4 terabits of switching capacity.

Another direction the platform could evolve is to add an backplane to connect multiple Voyagers. This is something already done with the Wedge '6-pack' that combines six Wedge switch cards. A Voyager 6-pack would result in a packet-optical platform with multiple terabits of switching and routeing capacity.

“This is an industry-driven initiative as opposed to a company-driven one,” says Robinson. “Voyager will go whichever way the industry thinks the lowest cost is.” 

 

Corrected on Dec 22nd. The AC-400 is a 5"x7" module and not as originally stated.


Verizon tips silicon photonics as a key systems enabler

Verizon's director of optical transport network architecture and design, Glenn Wellbrock, shares the operator’s thoughts regarding silicon photonics.

 

Part 3: An operator view

Glenn Wellbrock is upbeat about silicon photonics’ prospects. Challenges remain, he says, but the industry is making progress. “Fundamentally, we believe silicon photonics is a real enabler,” he says. “It is the only way to get to the densities that we want.”

 

Glenn Wellbrock

Wellbrock adds that indium phosphide-based photonic integrated circuits (PICs) can also achieve such densities.

But there are many potential silicon photonics suppliers because of its relatively low barrier to entry, unlike indium phosphide. "To date, Infinera has been the only real [indium phosphide] PIC company and they build only for their own platform,” says Wellbrock.

That an operator must delve into emerging photonics technologies may at first glance seem surprising. But Verizon needs to understand the issues and performance of such technologies. “If we understand what the component-level capabilities are, we can help drive that with requirements,” says Wellbrock. “We also have a better appreciation for what the system guys can and cannot do.”    

Verizon can’t be an expert in the subject, he says, but it can certainly be involved. “To the point where we understand the timelines, the cost points, the value-add and the risk factors,” he says. “There are risk factors that we also want to understand, independent of what the system suppliers might tell us.” 

 

The cost saving is real, but it is also the space savings and power saving that are just as important  

 

All the silicon photonics players must add a laser in one form or another to the silicon substrate since silicon itself cannot lase, but pretty much all the other optical functions can be done on the silicon substrate, says Wellbrock: “The cost saving is real, but it is also the space savings and power saving that are just as important.”  

The big achievement of silicon photonics, which Wellbrock describes as a breakthrough, is the getting rid of the gold boxes around the discrete optical components. “How do I get to the point where I don’t have fibre connecting all these discrete components, where the traces are built into the silicon, the modulator is built in, even the detector is built right in.” The resulting design is then easier to package. “Eventually I get to the point where the packaging is glass over the top of that.” 

So what has silicon photonics demonstrated that gives Verizon confidence about its prospects? 

Wellbrock points to several achievements, the first being Infinera’s PICs. Yes, he says, Infinera’s designs are indium phosphide-based and not silicon photonics, but the company makes really dense, low-power and highly reliable components.

He also cites Cisco’s silicon photonics-based CPAK 100 Gig optical modules, and Acacia, which is applying silicon photonics and its in-house DSP-ASICs to get a lower power consumption than other, high-end line-side transmitters.

Verizon believes the technology will also be used in CFP4 and QSFP28 optical modules, and at the next level of integration that avoids pluggable modules on the equipment's faceplate altogether.  

But challenges remain. Scale is one issue that concerns Verizon. What makes silicon chips cheap is the fact that they are made in high volumes. “It [silicon photonics] couldn’t survive on just the 100 gigabit modules that the telecom world are buying,” says Wellbrock. 

 

If these issues are not resolved, then indium phosphide continues to win for a long time because that is where the volumes are today

 

When Verizon asks the silicon photonics players about how such scale will be achieved, the response it gets is data centre interconnect. “Inside the data centre, the optics is growing so rapidly," says Wellbrock. "We can leverage that in telecom."

The other issue is device packaging, for silicon photonics and for indium phosphide. It is ok making a silicon-photonics die cheaply but unless the packaging costs can be reduced, the overall cost saving is lost. ”How to make it reliable and mainstream so that everyone is using the same packaging to get cost down,” says Wellbrock.

All these issues - volumes, packaging, increasing the number of applications a single part can be applied to -  need to be resolved and almost simultaneously. Otherwise, the technology will not realise its full potential and the start-ups will dwindle before the problems are fixed.

“If these issues are not resolved, then indium phosphide continues to win for a long time because that is where the volumes are today,” he says. 

Verizon, however, is optimistic. “We are making enough progress here to where it should all pan out,” says Wellbrock.     

 


Silicon photonics: "The excitement has gone"

The opinion of industry analysts regarding silicon photonics is mixed at best. More silicon photonics products are shipping but challenges remain.

 

Part 1: An analyst perspective

"The excitement has gone,” says Vladimir Kozlov, CEO of LightCounting Market Research. “Now it is the long hard work to deliver products.” 

Dale Murray, LightCounting

However, he is less concerned about recent setbacks and slippages for companies such as Intel that are developing silicon photonics products. This is to be expected, he says, as happens with all emerging technologies.

Mark Lutkowitz, principal at consultancy fibeReality, is more circumspect. “As a general rule, the more that reality sets in, the less impressive silicon photonics gets to be,” he says. “The physics is just hard; light is not naturally inclined to work on the silicon the way electronics does.”

LightCounting, which tracks optical component and modules, says silicon photonics product shipments in volume are happening. The market research firm cites Cisco’s CPAK transceivers, and 40 gigabit PSM4 modules shipping in excess of 100,000 units as examples. Six companies now offer 40 gigabit PSM4 products with Luxtera, a silicon photonics player, having a healthy start on the other five.

 

Indium phosphide and other technologies will not step back and give silicon photonics a free ride

 

LightCounting also cites Acacia with its silicon photonics-based low-power 100 and 400 gigabit coherent modules. “At OFC, Acacia made a fairly compelling case, but how much of its modules’ optical performance is down to silicon photonics and how much is down to its advanced coherent DSP chip is unclear,” says Dale Murray, principal analyst at LightCounting. Silicon photonics has not shown itself to be the overwhelming solution for metro/ regional and long-haul networks to date but that could change, he says.

Another trend LightCounting notes is how PAM-4 modulation is becoming adopted within standards. PAM-4 modulates two bits of data per symbol and has been adopted for the emerging 400 Gigabit Ethernet standard. Silicon photonics modulators work really well with PAM-4 and getting it into standards benefits the technology, says LightCounting. “All standards were developed around indium phosphide and gallium arsenide technologies until now,” says Kozlov.

 

You would be hard pressed to find a lot of OEMs or systems integrators that talk about silicon photonics and what impact it is going to have 

 

Silicon photonics has been tainted due to the amount of hype it has received in recent years, says Murray. Especially the claim that optical products made in a CMOS fabrication plant will be significantly cheaper compared to traditional III-V-based optical components. 

First, Murray highlights that no CMOS production line can make photonic devices without adaptation. “And how many wafers starts are there for the whole industry? How much does a [CMOS] wafer cost?” he says. 

“You would be hard pressed to find a lot of OEMs or systems integrators that talk about silicon photonics and what impact it is going to have,” says Lutkowitz. “To me, that has always said everything.”  

Mark Lutkowitz, fibeReality LightCounting highlights heterogeneous integration as one promising avenue for silicon photonics. Heterogeneous integration involves bonding III-V and silicon wafers before processing the two.

This hybrid approach uses the III-V materials for the active components while benefitting from silicon’s larger (300 mm) wafer sizes and advanced manufacturing techniques.

Such an approach avoids the need to attach and align an external discrete laser. “If that can be integrated into a WDM design, then you have got the potential to realise the dream of silicon photonics,” says Murray. “But it’s not quite there yet.”

 

This poses a real challenge for silicon photonics: it will only achieve low cost if there are sufficient volumes, but without such volumes it will not achieve a cost differential

 

Murray says over 30 vendors now make modules at 40 gigabit and above: “There are numerous module types and more are being added all the time.” Then there is silicon photonics which has its own product pie split. This poses a real challenge for silicon photonics: it will only achieve low cost if there are sufficient volumes, but without such volumes it will not achieve a cost differential.

“Indium phosphide and other technologies will not step back and give silicon photonics a free ride, and are going to fight it,” says Kozlov. Nor is it just VCSELs that are made in high volumes.

LightCounting expects over 100 million indium phosphide transceivers to ship this year. Many of these transceivers use distributed feedback (DFB) lasers and many are at 10 gigabit and are inexpensive, says Kozlov. 

For FTTx and GPON, bi-directional optical subassemblies (BOSAs) now cost $9, he says: “How much lower cost can you get?”  


Privacy Preference Center