counter for iweb
Website
Silicon Photonics

Published book, click here

Wednesday
Jun012022

Ayar Labs gets to work with leading AI and HPC vendors

Optical interconnect specialist Ayar Labs has announced that it is working with Nvidia, a leader in artificial intelligence (AI) and machine learning silicon, systems and software.

In February Ayar Labs announced a strategic collaboration with the world’s leading high-performance computing (HPC) firm, Hewlett Packard Enterprise (HPE).

Charles Wuischpard

Both Nvidia and HPE were part of the Series C funding worth $130 million that Ayar Labs secured in April.

Click to read more ...

Thursday
May262022

The quiet progress of Network Functions Virtualisation 

Network Functions Virtualisation (NFV) is a term less often heard these days.

Yet the technology framework that kickstarted a decade of network transformation by the telecom operators continues to progress.

Bruno Chatras

The working body specifying NFV, the European Telecommunications Standards Institute's (ETSI) Industry Specification Group (ISG) Network Functions Virtualisation (NFV), is working on the latest releases of the architecture.

The releases add AI and machine learning, intent-based management, power savings, and virtual radio access network (VRAN) support.

ETSI is also shortening the time between NFV releases.

“NFV is quite a simple concept but turning the concept into reality in service providers’ networks is challenging,” says Bruno Chatras, ETSI’s ISG NFV Chairman and senior standardisation manager at Orange Innovation. “There are many hidden issues, and the more you deploy NFV solutions, the more issues you find that need to be addressed via standardisation.”

Click to read more ...

Friday
May202022

II-VI’s VCSEL approach for co-packaged optics

Co-packaged optics was a central theme at this year’s OFC show, held in San Diego. But the solutions detailed were primarily using single-mode lasers and fibre.

Vipul Bhatt

The firm II-VI is beating a co-packaged optics path using vertical-cavity surface-emitting lasers (VCSELs) and multi-mode fibre while also pursuing single-mode, silicon photonics-based co-packaged optics.   

For multi-mode, VCSEL-based co-packaging, II-VI is working with IBM, a collaboration that started as part of a U.S. Advanced Research Projects Agency-Energy (ARPA-E) project to promote energy-saving technologies.

II-VI claims there are significant system benefits using VCSEL-based co-packaged optics. The benefits include lower power, cost and latency when compared with pluggable optics.

The two key design decisions that achieved power savings are the elimination of the retimer chip - also known as a direct-drive or linear interface - and the use of VCSELs.

The approach - what II-VI calls shortwave co-packaged optics - integrates the VCSELs, chip and optics in the same package.

Click to read more ...

Wednesday
May112022

Vodafone's effort to get silicon for telco

This as an exciting time for semiconductors, says Santiago Tenorio, which is why his company, Vodafone, wants to exploit this period to benefit the radio access network (RAN), the most costly part of the wireless network for telecom operators.

The telecom operators want greater choice when buying RAN equipment.

Santiago Tenorio

As Tenorio, a Vodafone Fellow (the company’s first) and its network architecture director, notes, there were more than ten wireless RAN equipment vendors 15 years ago. Now, in some parts of the world, the choice is down to two.

“We were looking for more choice and that is how [the] Open RAN [initiative] started,” says Tenorio. “We are making a lot of progress on that and creating new options.”

But having more equipment suppliers is not all: the choice of silicon inside the equipment is also limited.

Click to read more ...

Thursday
May052022

BT’s first quantum key distribution network

The trial of a commercial quantum-secured metro network has started in London.

Professor Andrew Lord

The BT network enables customers to send data securely between sites by first sending encryption keys over optical fibre using a technique known as quantum key distribution (QKD).

The attraction of QKD is that any attempt to eavesdrop and intercept the keys being sent is discernable at the receiver.

The network uses QKD equipment and key management software from Toshiba while the trial also involves EY, the professional services company.

EY is using BT’s network to connect two of its London sites and will showcase the merits of QKD to its customers.

Click to read more ...

Tuesday
Apr262022

The ONF adapts after sale of spin-off Ananki to Intel

Intel’s acquisition of Ananki, a private 5G networking company set up within the ONF last year, has meant the open-model organisation has lost the bulk of its engineering staff.

Timon Sloane

The ONF, a decade-old non-profit consortium led by the telecom operators, has developed some notable networking projects over the years such as CORD, OpenFlow, one of the first software-defined networking (SDN) standards, and Aether, the 5G edge platform.

Its joint work with the operators has led to virtualised and SDN building blocks that, when combined, can address comprehensive networking tasks such as 5G, wireline broadband and private wireless networks.

The ONF’s approach has differed from other open-source organisations. Its members pay for an in-house engineering team to co-develop networking blocks based on disaggregation, SDN and cloud.

The ONF and its members have built a comprehensive portfolio of networking functions which last year led to the organisation spinning out a start-up, Ananki, to commercialise a complete private end-to-end wireless network.

Now Intel has acquired Ananki, taking with it 44 of the ONF’s 55 staff.

“Intel acquired Ananki, Intel did not acquire the ONF,” says Timon Sloane, the ONF’s newly appointed general manager. “The ONF is still whole.”

The ONF will now continue with a model akin to other open-source organisations.

Click to read more ...

Sunday
Apr172022

Effect Photonics buys the coherent DSP team of Viasat  

Effect Photonics has completed the acquisition of Viasat’s staff specialising in coherent digital signal processing and forward error correction (FEC) technologies and the associated intellectual property.

Harald Graber

The company also announced a deal with Jabil Photonics - a business unit of manufacturing services firm Jabil - to co-develop coherent optical modules that the two companies will sell.

The deals enable Effect Photonics to combine Viasat’s coherent IP with its indium phosphide laser and photonic integrated circuit (PIC) expertise to build coherent optical designs and bring them to market.

Click to read more ...