counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in Andrew Lord (10)

Wednesday
Oct182023

Optical networking's future

Shown is Professor Polina Bayvel in her lab at University College London. Bayvel gave the opening plenary talk at ECOC.

Should the industry do more to support universities undertaking optical networking research? Professor Polina Bayvel thinks so and addressed the issue in her plenary talk at the ECOC conference and exhibition held in Glasgow, Scotland, earlier this month.

Click to read more ...

Thursday
Oct272022

BT's IP-over-DWDM move

  • BT will roll out next year IP-over-DWDM using pluggable coherent optics in its network
  • At ECOC 2022, BT detailed network trials that involved the use of ZR+ and XR optics coherent pluggable modules

Telecom operators have been reassessing IP-over-DWDM with the advent of 400-gigabit coherent optics that plug directly into IP routers.

According to BT, using pluggables for IP-over-DWDM means a separate transponder box and associated 'grey' (short-reach) optics are no longer needed.

Until now, the transponder has linked the IP router to the dense wavelength-division multiplexing (DWDM) optical line system.

"Here is an opportunity to eliminate unnecessary equipment by putting coloured optics straight onto the router," says Professor Andrew Lord, BT's head of optical networking.

Removing equipment saves power and floor space too.

Click to read more ...

Friday
Oct142022

ECOC '22 Reflections - Part 3 

Gazettabyte is asking industry and academic figures for their thoughts after attending ECOC 2022, held in Basel, Switzerland. In particular, what developments and trends they noted, what they learned, and what, if anything, surprised them. 

In Part 3, BT's Professor Andrew Lord, Scintil Photonics' Sylvie Menezo, Intel's Scott Schube, and Quintessent's Alan Liu share their thoughts.

Click to read more ...

Thursday
May052022

BT’s first quantum key distribution network

The trial of a commercial quantum-secured metro network has started in London.

Professor Andrew Lord

The BT network enables customers to send data securely between sites by first sending encryption keys over optical fibre using a technique known as quantum key distribution (QKD).

The attraction of QKD is that any attempt to eavesdrop and intercept the keys being sent is discernable at the receiver.

The network uses QKD equipment and key management software from Toshiba while the trial also involves EY, the professional services company.

EY is using BT’s network to connect two of its London sites and will showcase the merits of QKD to its customers.

Click to read more ...

Tuesday
Feb152022

Building the data rate out of smaller baud rates

In the second article addressing the challenges of increasing the symbol rate of coherent optical transport systems, Professor Andrew Lord, BT’s head of optical network research, argues that the time is fast approaching to consider alternative approaches.

Coherent discourse 2

Coherent optical transport systems have advanced considerably in the last decade to cope with the relentless growth of internet traffic.

Professor Andrew Lord

One-hundred-gigabit wavelengths, long the networking standard, have been replaced by 400-gigabit ones while state-of-the-art networks now use 800 gigabits.

Increasing the data carried by a single wavelength requires advancing the coherent digital signal processor (DSP), electronics and optics.

It also requires faster symbol rates.

Moving from 32 to 64 to 96 gigabaud (GBd) has increased the capacity of coherent transceivers from 100 to 800 gigabits.

Last year, Acacia, now part of Cisco, announced the first 1-terabit-plus wavelength coherent modem that uses a 128GBd symbol rate.

Other vendors will also be detailing their terabit coherent designs, perhaps as soon as the OFC show, to be held in San Diego in March.

The industry consensus is that 240GBd systems will be possible towards the end of this decade although all admit that achieving this target is a huge challenge.

Click to read more ...

Tuesday
Jun012021

BT takes a deep dive into hollow-core fibre

BT has been experimenting with hollow-core fibre to understand how it could benefit its network. The results are promising.

Professor Andrew Lord“We are looking at all the use cases and it is a bit early to say which one is the killer one but they are all interesting,” says Professor Andrew Lord, BT’s head of optical network research.

“There are so many parameters [of hollow-core fibre] and all seem to be slightly or vastly better than single-mode fibre,” says Neil Parkin, optical networks research manager at BT.

The service provider is working with hollow-core fibre start-up, Lumenisity, and 5G software networking specialist, Mavenir.

Click to read more ...

Friday
May052017

BT bolsters research in quantum technologies

BT is increasing its investment in quantum technologies. “We have a whole team of people doing quantum and it is growing really fast,” says Andrew Lord, head of optical communications at BT.

The UK incumbent is working with companies such as Huawei, ADVA Optical Networking and ID Quantique on quantum cryptography, used for secure point-to-point communications. And in February, BT joined the Telecom Infra Project (TIP), and will work with Facebook and other TIP members at BT Labs in Adastral Park and at London’s Tech City. Quantum computing is one early project.

Andrew LordThe topics of quantum computing and data security are linked. The advent of quantum computers promises the break the encryption schemes securing data today, while developments in quantum cryptography coupled with advances in mathematics promise new schemes resilient to the quantum computer threat.

Click to read more ...