OFC/NFOEC 2013: Technical paper highlights
Source: The Optical Society
Network evolution strategies, state-of-the-art optical deployments, next-generation PON and data centre interconnect are just some of the technical paper highlights of the upcoming OFC/NFOEC conference and exhibition, to be held in Anaheim, California from March 17-21, 2013. Here is a selection of the papers.
Optical network applications and services
Fujitsu and AT&T Labs-Research (Paper Number: 1551236) present simulation results of shared mesh restoration in a backbone network. The simulation uses up to 27 percent fewer regenerators than dedicated protection while increasing capacity by some 40 percent.
KDDI R&D Laboratories and the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Spain (Paper Number: 1553225) show results of an OpenFlow/stateless PCE integrated control plane that uses protocol extensions to enable end-to-end path provisioning and lightpath restoration in a transparent wavelength switched optical network (WSON).
In invited papers, Juniper highlights the benefits of multi-layer packet-optical transport, IBM discusses future high-performance computers and optical networking, while Verizon addresses multi-tenant data centre and cloud networking evolution.
Network technologies and applications
A paper by NEC (Paper Number: 1551818) highlights 400 Gigabit transmission using four parallel 100 Gigabit subcarriers over 3,600km. Using optical Nyquist shaping each carrier occupies 37.5GHz for a total bandwidth of 150GHz.
In an invited paper Andrea Bianco of the Politecnico de Torino, Italy details energy awareness in the design of optical core networks, while Verizon's Roman Egorov discusses next-generation ROADM architecture and design.
FTTx technologies, deployment and applications
In invited papers, operators share their analysis and experiences regarding optical access. Ralf Hülsermann of Deutsche Telekom evaluates the cost and performance of WDM-based access networks, while France Telecom's Philippe Chanclou shares the lessons learnt regarding its PON deployments and details its next steps.
Optical devices for switching, filtering and interconnects
In invited papers, MIT's Vladimir Stojanovic discusses chip and board scale integrated photonic networks for next-generation computers. Alcatel-Lucent's Bell Labs' Nicholas Fontaine gives an update on devices and components for space-division multiplexing in few-mode fibres, while Acacia's Long Chen discusses silicon photonic integrated circuits for WDM and optical switches.
Optoelectronic devices
Teraxion and McGill University (Paper Number: 1549579) detail a compact (6mmx8mm) silicon photonics-based coherent receiver. Using PM-QPSK modulation at 28 Gbaud, up to 4,800 km is achieved.
Meanwhile, Intel and the UC-Santa Barbara (Paper Number: 1552462) discuss a hybrid silicon DFB laser array emitting over 200nm integrated with EAMs (3dB bandwidth> 30GHz). Four bandgaps spread over greater than 100nm are realised using quantum well intermixing.
Transmission subsystems and network elements
In invited Papers, David Plant of McGill University compares OFDM and Nyquist WDM, while AT&T's Sheryl Woodward addresses ROADM options in optical networks and whether to use a flexible grid or not.
Core networks
Orange Labs' Jean-Luc Auge asks whether flexible transponders can be used to reduce margins. In other invited papers, Rudiger Kunze of Deutsche Telekom details the operator's standardisation activities to achieve 100 Gig interoperability for metro applications, while Jeffrey He of Huawei discusses the impact of cloud, data centres and IT on transport networks.
Access networks
Roberto Gaudino of the Politecnico di Torino discusses the advantages of coherent detection in reflective PONs. In other invited papers, Hiroaki Mukai of Mitsubishi Electric details an energy efficient 10G-EPON system, Ronald Heron of Alcatel-Lucent Canada gives an update on FSAN's NG-PON2 while Norbert Keil of the Fraunhofer Heinrich-Hertz Institute highlights progress in polymer-based components for next-generation PON.
Optical interconnection networks for datacom and computercom
Use of orthogonal multipulse modulation for 64 Gigabit Fibre Channel is detailed by Avago Technologies and the University of Cambridge (Paper Number: 1551341).
IBM T.J. Watson (Paper Number: 1551747) has a paper on a 35Gbps VCSEL-based optical link using 32nm SOI CMOS circuits. IBM is claiming record optical link power efficiencies of 1pJ/b at 25Gb/s and 2.7pJ/b at 35Gbps.
Several companies detail activities for the data centre in the invited papers.
Oracle's Ola Torudbakken has a paper on a 50Tbps optically-cabled Infiniband data centre switch, HP's Mike Schlansker discusses configurable optical interconnects for scalable data centres, Fujitsu's Jun Matsui details a high-bandwidth optical interconnection for an densely integrated server while Brad Booth of Dell also looks at optical interconnect for volume servers.
In other papers, Mike Bennett of Lawrence Berkeley National Lab looks at network energy efficiency issues in the data centre. Lastly, Cisco's Erol Roberts addresses data centre architecture evolution and the role of optical interconnect.
OFC/NFOEC 2012: Technical paper highlights
Source: The Optical Society
Novel technologies, operators' experiences with state-of-the-art optical deployments and technical papers on topics such as next-generation PON and 400 Gigabit and 1 Terabit optical transmission are some of the highlights of the upcoming OFC/NFOEC conference and exhibition, to be held in Los Angeles from March 4-8, 2012. Here is a taste of some of the technical paper highlights.
Optical networking
In Spectrum, Cost and Energy Efficiency in Fixed-Grid and Flew-Grid Networks (Paper number 1248601) an evaluation of single and multi-carrier networks at rates up to 400 Gigabit-per-second (Gbps) is made by the Athens Information Technology Center. One finding is that efficient spectrum utilisation and fine bit-rate granularity are essential if cost and energy efficiencies are to be realised.
In several invited papers, operators report their experiences with the latest networking technologies. AT&T Labs discusses advanced ROADM networks; NTT details the digital signal processing (DSP) aspects of 100Gbps DWDM systems and, in a separate paper, the challenge for Optical Transport Network (OTN) at 400Gbps and beyond, while Verizon gives an update on the status of MPLS-TP. As part of the invited papers, Finisar's Chris Cole outlines the next-generation CFP modules.
Optical access
Fabrice Bourgart of FT-Orange Labs details where the next generation PON standards - NGPON2 - are going while NeoPhotonics's David Piehler outlines the state of photonic integrated circuit (PIC) technologies for PONS. This is also a topic tackled by Oclaro's Michael Wale: PICs for next-generation optical access systems. Meanwhile Ao Zhang of Fiberhome Telecommunication Technologies discusses the state of FTTH deployments in the world's biggest market, China.
Switching, filtering and interconnect optical devices
NTT has a paper that details a flexible format modulator using a hybrid design based on a planar lightwave circuit (PLC) and lithium niobate. In a separate paper, NTT discusses silica-based PLC transponder aggregators for a colourless, directionless and contentionless ROADM, while Nistica's Tom Strasser discusses gridless ROADMs. Compact thin-film polymer modulators for telecoms is a subject tackled by GigOptix's Raluca Dinu.
One novel paper is on graphene-based optical modulators by Ming Liu, Xiang at the UC Berkeley (Paper Number: 1249064). The optical loss of graphene can be tuned by shifting its Fermi level, he says. The paper shows that such tuning can be used for a high-speed optical modulator at telecom wavelengths.
Optoelectronic Devices
CMOS photonic integrated circuits is the topic discussed by MIT's Rajeev Ram, who outlines a system-on-chip with photonic input and output. Applications range from multiprocessor interconnects to coherent communications (Paper Number: 1249068).
A polarisation-diversity coherent receiver on polymer PLC for QPSK and QAM signals is presented by Thomas Richter of the Fraunhofer Institute for Telecommunications (Paper Number: 1249427). The device has been tested in systems using 16-QAM and QPSK modulation up to 112 Gbps.
Core network
Ciena's Maurice O'Sullivan outlines 400Gbps/ 1Tbps high-spectral efficiency technology and some of the enabling subsystems. Alcatel-Lucent's Steven Korotky discusses traffic trends: drivers and measures of cost-effective and energy-efficient technologies and architectures for the optical backbone networks, while transport requirements for next-generation heterogeneous networks is the subject tackled by Bruce Nelson of Juniper Networks.
Data centre
IBM's Casimir DeCusatis presents a future - 2015-and-beyond - view of data centre optical networking. The data centre is also tackled by HP's Moray McLaren, in his paper on future computing architectures enabled by optical and nanophotonic interconnects. Optically-interconnected data centres are also discussed by Lei Xu of NEC Labs America.
Expanding usable capacity of fibre syposium
There is a special symposium at OFC/ NFOEC entitled Enabling Technologies for Fiber Capacities Beyond 100 Terabits/second. The papers in the symposium discuss MIMO and OFDM, technologies more commonly encountered in the wireless world.
OIF promotes uni-fabric switches & 100G transmitter
The OIF's OTN implementation agreement (IA) allows a packet fabric to also switch OTN traffic. The result is that operators can now use one switch for both traffic types, aiding IP/ Ethernet and OTN convergence. Source: OIF
Improving the switching capabilities of telecom platforms without redesigning the switch as well as tinier 100 Gigabit transmitters are just two recent initiatives of the Optical Internetworking Forum (OIF).
The OIF, the industry body tackling design issues not addressed by the IEEE and International Telecommunication Union (ITU) standards bodies, has just completed its OTN-over-Packet-Fabric protocol that enables optical transport network (OTN) traffic to be carried over a packet switch. The protocol works by modifying the line cards at the switch's input and output, leaving the switch itself untouched (see diagram above).
In contrast, the OIF is starting a 100 Gigabit-per-second (Gbps) transmitter design project dubbed the integrated dual-polarisation quadrature modulated transmitter assembly (ITXA). The Working Group aims to expand the 100Gbps applications with a transmitter design half the size of the OIF's existing 100Gbps transmitter module.
The Working Group also wants greater involvement from the system vendors to ensure the resulting 100 Gig design is not conservative. "We joke about three types of people that attend these [working group] meetings," says Karl Gass, the OIF’s Physical and Link Layer Working Group vice-chair. "The first group has something they want to get done, the second group has something already and they don't want something to get done, and the third group want to watch." Quite often it is the system vendors that fall into this third group, he says.
OTN-over-Packet-Fabric protocol
The OTN protocol enable a single switch fabric to be used for both traffic types - packets and time-division multiplexed (TDM) OTN - to save cost for the operators.
"OTN is out there while Ethernet is prevalent," says Winston Mok, technical author of the OTN implementation agreement. "What we would like to do is enable boxes to be built that can do both economically."
The existing arrangement where separate packet and OTN time-division multiplexing (TDM) switches are required. Source: OIF
Platforms using the protocol are coming to market. ECI Telecom says its recently announced Apollo family is one of the first OTN platforms to use the technique.
The protocol works by segmenting OTN traffic into a packet format that is then switched before being reconstructed at the output line card. To do this, the constant bit-rate OTN traffic is chopped up so that it can easily go through the switch as a packet. "We want to keep the [switch] fabric agnostic to this operation," says Mok. "Only the line cards need to do the adaptations."
The OTN traffic also has timing information which the protocol must convey as it passes through the switch. The OIF's solution is to vary the size of the chopped-up OTN packets. The packet is nominally 128-bytes long. But the size will occasionally be varied to 127 and 126 bytes as required. These sequences are interpreted at the output of the switch as rate information and used to control a phase-locked loop.
Mok says the implementation agreement document that describes the protocol is now available. The protocol does not define the physical layer interface connecting the line card to the switch, however. "Most people have their own physical layer," says Mok.
100 Gig ITXA
The ITXA project will add to the OIF's existing integrated transmitter document. The original document addresses the 100 Gigabit transmitter for dual-polarisation, quadrature phase-shift keying (DP-QPSK) for long-haul optical transmission. The OIF has also defined 100Gbps receiver assembly and tunable laser documents.
The latest ITXA Working Group has two goals: to shrink the size of the assembly to lower cost and increase the number of 100Gbps interfaces on a line card, and to expand the applications to include metro. The ITXA will still address 100Gbps coherent designs but will not be confined to DP-QPSK, says Gass.
"We started out with a 7x5-inch module and now there is interest from system vendors and module makers to go to smaller [optical module] form factors," says Gass. "There is also interest from other modulator vendors that want in on the game."
The reduce size, the ITXA will support other modulator technologies besides lithium niobate that is used for long-haul. These include indium phosphide, gallium arsenide and polymer-based modulators.
Gass stresses that the ITXA is not a replacement for the current transmitter implementation. "We are not going to get the 'quality' that we need for long-haul applications out of other modulator technologies," he says. "This is not a Gen II [design].
The Working Group's aim is to determine the 'greatest common denominator' for this component. "We are trying to get the smallest form factor possible that several vendors can agree on," says Gass. "To come out with a common pin out, common control, common RF (radio frequency) interface, things like that."
Gass says the work directions are still open for consideration. For example, adding the laser with the modulator. "We can come up with a higher level of integration if we consider adding the laser, to have a more integrated transmitter module," says Gass.
As for wanting great system-vendor input, the Working Group wants more of their system-requirement insights to avoid the design becoming too restrictive.
"You end up with component vendors that do all the work and they want to be conservative," says Gass. "The component vendors don't want to push the boundaries as they want to hit the widest possible customer base."
Gass expects the ITXA work to take a year, with system demonstrations starting around mid-2013.
