Infinera’s ICE flow
Infinera’s newest Infinite Capacity Engine 5 (ICE5) doubles capacity to 2.4 terabits. The ICE, which comprises a coherent DSP and a photonic integrated circuit (PIC), is being demonstrated this week at the OFC show being held in San Diego.
Infinera has also detailed its ICE6, being developed in tandem with the ICE5. The two designs represent a fork in Infinera’s coherent engine roadmap in terms of the end markets they will address.
Geoff BennettThe ICE5 is targeted at data centre interconnect and applications where fibre in being added towards the network edge. The next-generation access network of cable operators is one such example. Another is mobile operators deploying fibre in preparation for 5G.
First platforms using the ICE5 will be unveiled later this year and will ship early next year.
Infinera’s ICE6 is set to appear two years after the ICE5. Like the ICE4, Infinera’s current Infinite Capacity Engine, the ICE6 will be used across all of Infinera’s product portfolio.
Meanwhile, the 1.2 terabit ICE4 will now be extended to work in the L-band of optical wavelengths alongside the existing C-band, effectively doubling a fibre’s capacity available for service providers.
Infinera’s decision to develop two generations of coherent designs follows the delay in bringing the ICE4 to market.
“The fundamental truth about the industry today is that coherent algorithms are really hard,” says Geoff Bennett, director, solutions and technology at Infinera.
By designing two generations in parallel, Infinera seeks to speed up the introduction of its coherent engines. “With ICE5 and ICE6, we have learnt our lesson,” says Bennett. “We recognise that there is an increased cadence demanded by certain parts of the industry, predominately the internet content providers.”
ICE5
The ICE5 uses a four-wavelength indium-phosphide PIC that, combined with the FlexCoherent DSP, supports a maximum symbol rate of 66Gbaud and a modulation rate of up to 64-ary quadrature amplitude modulation (64-QAM).
Infinera says that the FlexCoherent DSP used for ICE5 is a co-development but is not naming its partners.
Using 64-QAM and 66Gbaud enables 600-gigabit wavelengths for a total PIC capacity of 2.4 terabits. Each PIC is also ‘sliceable’, allowing each of the four wavelengths to be sent to a different location.
Infinera is not detailing the ICE5’s rates but says the design will support lower rates, as low as 200 gigabit-per-second (Gbps) or possibly 100Gbps per wavelength.
Bennett highlights 400Gbps as one speed of market interest. Infinera believes its ICE5 design will deliver 400 gigabits over 1,300km. The 600Gbps wavelength implemented using 64-QAM and 66Gbaud will have a relatively short reach of 200-250km.
“A six hundred gigabit wavelength is going to be very short haul but is ideal for data centre interconnect,” says Bennett, who points out that the extended reach of 400-gigabit wavelengths is attractive and will align with the market emergence of 400 Gigabit Ethernet client signals.
Probabilistic shaping squeezes the last bits of capacity-reach out of the spectrum
Hybrid Modulation
The 400-gigabit will be implemented using a hybrid modulation scheme. While Infinera is not detailing the particular scheme, Bennett cites several ways hybrid modulation can be implemented.
One hybrid modulation technique is to use a different modulation scheme on each of the two light polarisations as a way of offsetting non-linearities. The two modulation schemes can be repeatedly switched between the two polarisation arms. “It turns out that the non-linear penalty takes time to build up,” says Bennett.
Another approach is using blocks of symbols, varying the modulation used for each block. “The coherent receiver has to know how many symbols you are going to send with 64-QAM and how many with 32-QAM, for example,” he says
A third hybrid modulation approach is to use sub-carriers. In a traditional coherent system, a carrier is the output of the transmit laser. To generate sub-carriers, the coherent DSP’s digital-to-analogue converter (DAC) applies a signal to the modulator which causes the carrier to split into multiple sub-carriers.
To transmit at 32Gbaud, four sub-carriers can be used, each modulated at 8Gbaud, says Bennett. Nyquist shaping is used to pack the sub-carriers to ensure there is no spectral efficiency penalty.
“You now have four parallel streams and you can deal with them independently,” says Bennett, who points out that 8Gbaud turns out to be an optimal rate in terms of minimising non-linearities made up of cross-phase and self-phase modulation components.
Sub-carriers can be described as a hybrid modulation approach in that each sub-carrier can be operated at a different baud rate and use a different modulation scheme. This is how probabilistic constellation shaping - a technique that improves spectral efficiency and which allows the data rate used on a carrier to be fine-tuned - will be used with the ICE6, says Infinera.
For the ICE5, sub-carriers are not included. “For the applications we will be using ICE5 for, the sub-carrier technology is not as important,” says Bennett. “Where it is really important is in areas such as sub-sea.”
Silicon photonics has a lower carrier mobility. It is going to be harder and harder to build such parts of the optics in silicon.
Probabilistic constellation shaping
Infinera is not detailing the longer-term ICE6 beyond highlights two papers that were presented at the ECOC show last September that involved a working 100Gbaud sub-carrier-driven wavelength and probabilistic shaping applied to a 1024-QAM signal.
The 100Gbaud rate will enable higher capacity transponders while the use of probabilistic shaping will enable greater spectral efficiency. “Probabilistic shaping squeezes the last bits of capacity-reach out of the spectrum,” says Bennett.
“In ICE6 we will be doing different modulation on each sub-carrier,” says Bennett. “That will be part of probabilistic constellation shaping.” And assuming Infinera adheres to 8Gbaud sub-carriers, 16 will be used for a 100Gbaud symbol rate.
Infinera argues that the interface between the optics and the DSP becomes key at such high baud rates and it argues that its ability to develop both components will give it a system design advantage.
The company also argues that its use of indium phosphide for its PICs will be a crucial advantage at such high baud rates when compared to silicon photonics-based solutions. “Silicon photonics has a lower carrier mobility,” says Bennett. “It is going to be harder and harder to build such parts of the optics in silicon.”
ICE4 embraces the L-band
Infinera’s 1.2 terabit six-wavelength ICE4 was the first design to use Nyquist sub-carriers and SD-FEC gain sharing, part of what Infinera calls its advanced coherent toolkit.
At OFC, Infinera announced that the ICE4 will add the L-band in addition to the C-band. It also announced that the ICE4 has now been adopted across Infinera’s platform portfolio.
The first platforms to use the ICE4 were the Cloud Xpress 2, the compact modular platform used for data centre interconnect, and the XT-3300, a 1 rack-unit (1RU) modular platform targeted at long-haul applications.
A variant of the platform tailored for submarine applications, the XTS-3300, achieved a submarine reach of 10,500km in a trial last year. The modulation format used was 8-QAM coupled with SD-FEC gain-sharing and Nyquist sub-carriers. The resulting spectral efficiency achieved was 4.5bits/s/Hz. In comparison, standard 100-gigabit coherent transmission has a spectral efficiency of 2bits/s/Hz. The total capacity supported in the trial was 18.2 terabits.
Since then, the ICE4 has been added the various DTN-X chassis including the XT-3600 2.4 terabit 4RU platform.
Infinera goes multi-terabit with its latest photonic IC
In his new book, The Great Acceleration, Robert Colvile discusses how things we do are speeding up.
In 1845 it took U.S. President James Polk six months to send a message to California. Just 15 years later Abraham Lincoln's inaugural address could travel the same distance in under eight days, using the Pony Express. But the use of ponies for transcontinental communications was shortlived once the electrical telegraph took hold. [1]
The relentless progress in information transfer, enabled by chip advances and Moore's law, is taken largely for granted. Less noticed is the progress being made in integrated photonic chips, most notably by Infinera.
In 2000, optical transport sent data over long-haul links at 10 gigabit-per-second (Gbps), with 80 such channels supported in a platform. Fifteen years later, Infinera demonstrated its latest-generation photonic integrated circuit (PIC) and FlexCoherent DSP-ASIC that can transmit data at 600Gbps over 12,000km, and up to 2.4 terabit-per-second (Tbps) - three times the data capacity of a state-of-the-art dense wavelength-division multiplexing (DWDM) platform back in 2000 - over 1,150km.
Infinite Capacity Engine
Infinera dubs its latest optoelectronic subsystem the Infinite Capacity Engine. The subsystem comprises a pair of indium-phosphide PICs - a transmitter and a receiver - and the FlexCoherent DSP-ASIC. The performance capabilities that the Infinite Capacity Engine enables were unveiled by Infinera in January with its Advanced Coherent Toolkit announcement. Now, to coincide with OFC 2016, Infinera has detailed the underlying chips that enable the toolkit. And company product announcements using the new hardware will be made later this year, says Pravin Mahajan, the company's director of product and corporate marketing.
The claimed advantages of the Infinite Capacity Engine include a 82 percent reduction in power consumption compared to a system using discrete optical components and a dozen 100-gigabit coherent DSP-ASICs, and a 53 percent reduction in total-cost-of-ownership compared to competing dense WDM platforms. The FlexCoherent chip also features line rate data encryption.
"The Infinite Capacity Engine is the industry's first multi-terabit it super-channel, says Mahajan. "It also delivers the industry's first multi-terabit layer one encryption."
Multi-terabit PIC
Infinera's first transmitter and receiver PIC pair, launched in 2005, supported 10, 10-gigabit channels and implemented non-coherent optical transmission.
In 2011 Infinera introduced a 500-gigabit super-channel coherent PIC pair used with Infinera's DTN-X platforms and also its Cloud Xpress data centre interconnect platform launched in 2014. The 500 Gigabit design implemented 10, 50 gigabit channels that implemented polarisation-multiplexed, quadrature phase-shift keying (PM-QPSK) modulation. The accompanying FlexCoherent DSP-ASIC was implemented using a 40nm CMOS process node and support a symbol rate of 16 gigabaud.
The PIC design has since been enhanced to also support additional modulation schemes such as as polarisation-multiplexed, binary phase-shift keying (PM-BPSK) and 3 quadrature amplitude modulation (PM-3QAM) that extend the DTN-X's ultra long-haul performance.
In 2015 Infinera also launched the oPIC-100, a 100-gigabit PIC for metro applications that enables Infinera to exploit the concept of sliceable bandwidth by pairing oPIC-100s with a 500 gigabit PIC. Here the full 500 gigabit super-channel capacity can be pre-deployed even if not all of the capacity is used. Using Infinera's time-based instant bandwidth feature, part of that 500 gigabit capacity can be added between nodes in a few hours based on a request for greater bandwidth.
Now, with the Infinite Capacity Engine PIC, the effective number of channels has been expanded to 12, each capable of supporting a range of modulation techniques (see table below) and data rates. In fact, Infinera uses multiple Nyquist sub-carriers spread across each of the 12 channels. By encoding the data across multiple sub-carriers a lower-baud rate can be used, increasing the tolerance to non-linear channel impairments during optical transmission.
Mahajan says the latest PIC has a power consumption similar to its current 500 Gigabit super-channel PIC but because the photonic design supports up to 2.4 terabit, the power consumption in gigabit-per-Watt is reduced by 70 percent.
FlexCoherent encryption
The latest FlexCoherent DSP-ASIC is Infinera's most complex yet. The 1.6 billion transistor 28nm CMOS IC can process two channels, and supports a 33 gigabaud symbol rate. As a result, six DSP-ASICs are used with the 12-channel PIC.
It is the DSP-ASIC that enables the various elements of the advanced coherent toolkit that includes improved soft-decision forward error correction. "The net coding gain is 11.9dB, up 0.9 dB, which improves the capacity-reach," says Mahajan. Infinera says the ultra long-haul performance has also been improved from 9,500km to over 12,000km.
Source: Infinera
The DSP also features layer one encryption implementing the 256-bit Advanced Encryption Standard (AES-256). Infinera says the request for encryption is being led by the Internet content providers but wholesale operators and co-location providers also want to secure transmissions between sites.
Infinera introduced layer two MACsec encryption with its Cloud Xpress platform. This encrypts the Ethernet payload but not the header. With layer one encryption, it is the OTN frames that are encoded. "When we get down to the OTN level, everything is encrypted," says Mahajan. An operator can choose to encrypt the entire super-channel or encrypt at the service level, down to the ODU0 (1.244 Gbps) level.
System benefits
Using the Infinite Capacity Engine, the transmission capacity over a fibre increases from 9.5 terabit to up to 26.4 terabit.
And with the newest PIC, Infinera can expand the sliceable transponder concept for metro-regional applications. The 2.4 terabits of capacity can be pre-deployed and new capacity turned up between nodes. "You can suddenly turn up 200 gigabit for a month or two, rent and then return it," says Mahajan. However, to support the full 2.4 terabits of capacity, the PIC at the other end of the link would also need to support 16-QAM.
Infinera does say there will be other Infinite Capacity Engine variants. "There will be specific engines for specific markets, and we would choose a subset of the modulations," says Mahajan.
One obvious platform that will benefit from the first Infinite Capacity Engine is the DTN-X. Another that will likely use an ICE variant is Infinera's Cloud Xpress. At present Infinera integrates its 500-gigabit PIC in a 2 rack-unit box for data centre interconnect applications. By using the new PIC and implementing PM-16QAM, the line-side capacity per rack unit of a second-generation Cloud Xpress would rise from 250 gigabit to 1.2 terabit. And with layer one encryption, the MACsec IC may no longer be needed.
Mahajan says the Infinite Capacity Engine has already been tested in the Telstra trial detailed in January. "We have already proven its viability but it is not deployed and carrying live traffic," he says.
