Professor Graham Reed: The calm before the storm
Silicon photonics luminaries series
Interview 3: Professor Graham Reed
Despite a half-century track record driving technology, electronics is increasingly calling upon optics for help. “It seems to me that this is a marriage that is really going to define the future,” says Graham Reed, professor of silicon photonics at the University of Southampton’s Optoelectronics Research Centre.

The optics alongside the electronics does not have to be silicon photonics, he says, but silicon as a photonics technology is attractive for several reasons.
“What makes silicon photonics interesting is its promise to enable low-cost manufacturing, an important requirement for emerging consumer applications,” says Reed. And being silicon-based, it is much more compatible than other photonics technologies. “It probably means silicon photonics is going to win out,” he says.
From Surrey to Southampton
Reed has been active in silicon photonics for over 25 years. As an academic at the University of Surrey, his first Ph.D. student was Andrew Rickman, who went on to found Bookham Technology and is now CEO of Rockley Photonics.
Rickman undertook the study of basic optical waveguide structures using silicon. “The first data we got, the waveguide losses were very high, 20 to 30dB per centimetre,” says Reed. “Within a year, we got the losses down to below 1dB per centimetre; that makes it viable.”
The research then broadened to include silicon modulators, a research topic Reed continues to this day.
Everything about silicon photonics is about low cost
The optical modulator is silicon photonics biggest achievement to date, argues Reed. “We were working on modulators in 1991 that worked at 20 megahertz,” he says. “Intel’s Mario Paniccia ribbed me when they got [a modulator] to 1 gigahertz.”
The Surrey group was not focussing on telecom when they started. “I never believed in the early 1990s that these things were going to go as fast as they became,” says Reed. Partly that was because the early work used much larger waveguides and to increase speed, the dimensions need to shrink.
In 2012, Reed and a dozen colleagues moved from the University of Surrey to the University of Southampton. Several factors led to the move. The University of Southampton was interested in the team, given its reputation and the rising importance of silicon photonics, while Reed was keen to make use of the university’s new on-site fabrication plant, which he describes as the best university fab in the UK and probably Europe.
“We were increasing frustrated with the fab facilities around the world,” says Reed. The team used multi-project wafers where companies and institutions have their circuits made on a shared wafer. However, such multi-project wafers have a lower run priority.
“Foundries do a good job but they often take much longer to deliver [the designs] than they aim,” says Reed. Worst case, it can take over three years to receive the chip design back. Given a project cycle typically lasts three years, this is a non-starter, he says: “Having a fab that you have a lot of control over is a big attraction”.
Research focus
Reed’s group is regularly approached by companies from all over the world. But it wasn't always like that. In the 1990s, getting funding to research silicon photonics was a challenge, he says.
The companies now contacting Reed’s group are either in the field and have a difficulty, or they want to enter the marketplace. “They want particular work done or a particular device worked upon,” he says.
Intel is one company that worked with Reed when they started their silicon photonics programme some dozen years ago.
Reed’s group’s research covers the development of individual optical components as well as systems. Much of the work is focussed on telecom and datacom, given that is where silicon photonics is most established, but the group is also conducting work using silicon photonics for longer wavelengths - 2 to 18 microns - known as the mid infra-red region.
Mid infra-red is an emerging field, says Reed: “People have seen the success of existing silicon photonics and are applying it to longer wavelengths.”
Such wavelengths are suited for sensing applications. “A lot of nasties - chemicals you’d want to sense - have characteristic absorption lines in this longer wavelength range,” he says.
Things also become easier at the longer wavelengths because the dimensions of the silicon features are more relaxed. However, additional materials are required that are transparent at these longer wavelengths, and these platforms all need developing. “Longer wavelengths equate to bigger waveguides; what gets more difficult are the sources and the detectors,” says Reed.
A third research activity his group is tackling is ongoing silicon photonics challenges such as wafer-scale testing, passive alignment, lowering power consumption and thermal stability issues.
Optical device work
Reed cites a low-channel-count multiplexer as an example of its research work on basic optical devices with the goal of helping commercialise silicon photonics.
“One of the issues in silicon photonics is to make things reliable and high yield,” says Reed. “One way to look at that is you need simplicity.”
The group has developed an angled multi-mode interference (MMI) multiplexer suited for 4 or 8 channel designs.
“It is so simple,” says Reed. The multiplexer is made in a single etch step and is based on large multi-mode waveguides that are more resilient to fabrication errors and layer thickness variations. The design is also more thermally stable than single-mode waveguides.
Another area is ring resonators - useful devices that can be used for a variety of tasks including modulation but which are sensitive to layer thickness variations as well as thermal stability issues. “If anyone is going to adopt ring resonators they need to find a way to make them athermal,” says Reed. “And they need a way to tune or trim to operate them to the resonance they need.”
Systems work
The group’s systems work addresses some of the same issues as the large systems vendors. However, the group is careful in the topics it chooses given their more modest university resources. “We are looking at more complex modulation systems but probably not for long haul communications,” says Reed.
Another research activity is looking at alternative ways to combine components. Using silicon photonics for integration in the mid infra-red range may give a new lease of life to the lab-on-a-chip concept. “People have talked about it for a long while but it hasn't really happened,” says Reed. “If you can do these things in a reliable and low-cost manner, maybe disposable chips are viable again.”
Silicon photonics challenges
Two current manufacturing challenges Reed highlights are the issues of passive alignment and wafer-scale testing.
Coupling the laser to a fibre or the silicon chip’s waveguide using passive alignment remains an ongoing challenge. “Everything about silicon photonics is about low cost,” says Reed. At present to attach a laser, it is typically turned on and aligned to the chip’s waveguide. This requires manual intervention and is time-consuming.
“The ideal scenario is to put a fibre down and it couples to the waveguide or laser and somehow you have aligned it,” he says. The challenge is the discrepancy in dimensions between the 10-micron fibre core and the waveguide, which is typically between 0.35- and 0.5-microns wide. Work is on-going to use mode converters or grating couplers such that the resulting optical loss is low enough to make passive alignment viable.
All these events are consistent with this field of technology pointing to mass markets
Wafer-scale testing remains another challenge. Grating couplers are one way designs can be tested while still on the silicon wafer. But these typically only allow the whole circuit to be tested - either it works or not - but you can’t test individual components. “If you are going to mimic the successes of electronics, you need to test more comprehensibly than that,” says Reed.
His group has developed an erasable grating that can be placed either side of a critical component to test it. These gratings can then be removed from the final circuit by using local laser annealing.
Reed expects the industry to overcome all these manufacturing challenges: “But it still means somebody has to have the brilliant idea”.
He is also somewhat surprised that there are not more silicon photonics products on the market, especially considering the huge investment in the technology made by some of the larger companies over the last decade.
He describes what is happening now as silicon photonics’ quiet period. Partly it is due to the vendors working to commercialise their technologies, partly it is the systems vendors that are developing next-generation products are evaluating the various technologies. “Until somebody jumps and that market takes off - and somebody will jump,” he says. “Then there will be ferocious activity.”
Opportunities
Reed is measured when assessing the future opportunities for the technology.
“It is not something that we strategise about - it is not what we do - but we get insights from time to time because of the people we work with and what they want,” he says. “The crucial thing is what facilitates the mass market because silicon photonics is really trying to bring photonics to the mass market.”
Reed does believe silicon photonics is disruptive: “If you look at the origins of what a disruptive technology is, it is a technology that works in one field but then it performs so well, it crosses the boundary into other areas”.
Silicon photonics was initially regarded as a short-reach technology but once the performance of its modulators started to drastically increase, the technology crossed the boundary into long-haul research, he notes. “That is the definition of a disruptive technology,” he says.
He also believes the technology has passed its tipping point. As evidence, he points to the investment made by the large companies and says it is inevitable that they will launch products: “So in that sense, the tipping point has already been and gone”.
In addition, he highlights the American Institute for Manufacturing Integrated Photonics (AIM Photonics) venture, the $610 million public and private funded initiative set up in 2015 to advance silicon photonics-based manufacturing.
“All these events are consistent with this field of technology pointing to mass markets,” says Reed. “If this was going to be indium phosphide that did that, why did not all that activity happen years ago?”
Mario Paniccia: We are just at the beginning
It got to the stage where Intel’s press relations department would come and ask what the team would be announcing in the coming months. “ 'Hey guys,' I said, 'it doesn't work that way ' ”.
Since leaving Intel last year, Paniccia has been working as a consultant and strategic advisor. He is now exploring opportunities for silicon photonics but in segments other than telecom and datacom.
“I didn't want to go into developing transceivers for other big companies and compete with my team's decade-plus of development; I spent 20 years at Intel,” he says.
Decade of development
Intel’s silicon photonics work originated in the testing of its microprocessors using a technique known as laser voltage probing. Infra-red light is applied to the back side of the silicon to make real-time measurements of the chip’s switching transistors.
For Paniccia, it raised the question: if it is possible to read transistor switching using light, can communications between silicon devices also be done optically? And can it be done in parallel to the silicon rather than using the back side of silicon?
In early 2000 Intel started working with academic Graham Reed, then at the University of Surrey, and described by Paniccia as one of the world leaders in silicon photonics devices. “We started with simple waveguides and it just progressed from there,” he says.
The Intel team set the target of developing a silicon modulator working at 1 gigahertz (GHz); at the time, the fastest silicon modulator operated at 10 megahertz. “Sometimes leadership is about pushing things out and putting a stake in the ground,” he says.
It was Intel’s achievement of a working 1GHz silicon modulator that led to the first paper in Nature. And by the time the paper was published, Intel had the modulator working at 2GHz. The work then progressed to developing a 10 gigabit-per-second (Gbps) modulator and then broadened to include developing other silicon photonics building-block devices that would be needed alongside the modulator – the hybrid silicon laser, the photo-detector and other passive devices needed for an integrated transmitter.
There is a difference between proving the technology works and making a business out of it
Once 10Gbps was achieved, the next milestone was 20Gbps and then 40Gbps. Once the building block devices achieved operation in excess of 40Gbps, Intel’s work turned to using these optical building blocks in integrated designs. This was the focus of the work between 2010 to 2012. Intel chose to develop a four-channel 40Gbps (4x10 gigabit) transceiver using four-wavelength coarse WDM which ended up working at 50Gbps (4x12.5 gigabit) and then, most recently, a 100Gbps transceiver.
He says the same Intel team is no longer talking about 50Gbps or 100Gbps but how to get multiple terabits coming out of a chip.
Status
Paniccia points out that in little more than a decade, the industry has gone from not knowing whether silicon could be used to make basic optical functions such as modulators and photo-detectors, to getting them to work at speeds in excess of 40Gbps. “I’d argue that today the performance is close to what you can get in III-V [compound semiconductors],” he says.
He believes silicon photonics is the technology of the future, it is just a question of when and where it is going to be applied: “There is a difference between proving the technology works and making a business out of it”.
In his mind, these are the challenges facing the industry: proving silicon photonics can be a viable commercial technology and determining the right places to apply it.
For Paniccia, the 100-gigabit market is a key market for silicon photonics. “I do think that 100 gigabit is where the intercept starts, and then silicon photonics becomes more prevalent as you go to 200 gigabit, 400 gigabit and 1 terabit,” he says.
So has silicon photonics achieved its tipping point?
Paniccia defines the tipping point for silicon photonics as when people start believing the technology is viable and are willing to invest. He cites the American Institute for Manufacturing Integrated Photonics (AIM Photonics) venture, the $610 million public and private funded initiative set up in 2015 to advance silicon photonics-based manufacturing. Other examples include the silicon photonics prototyping service coordinated by nano-electronics research institute imec in Belgium, and global chip-maker STMicroelectronics becoming a silicon photonics player having developed a 12-inch wafer manufacturing line.
Instead of one autonomous LIDAR system in a car, you could have 20 or 50 or 100 sprinkled throughout your vehicle
“All these are places where people not only see silicon photonics as viable but are investing significant funds to commercialise the technology,” says Paniccia. “There are numerous companies now selling commercialised silicon photonics, so I think the tipping point has passed.”
Another indicator that the tipping point has happened, he argues, is that people are not spending their effort and their money solely on developing the technology but are using CMOS processes to develop integrated products.
“Now people can say, I can take this process and build integrated devices,” he says. “And when I put it next to a DSP, or an FPGA, or control electronics or a switching chip, I can do things that you couldn't do next to bulky electronics or bulky photonics.”
It is this combination of silicon photonics with electronics that promises greater computing power, performance and lower power consumption, he says, a view shared by another silicon photonics luminary, Rockley Photonics CEO, Andrew Rickman.
Moreover, the opportunities for integrated photonics are not confined to telecom and datacom. “Optical testing systems for spectroscopy today is a big table of stuff - lasers, detectors modulators and filters,” says Paniccia. Now all these functions can be integrated on a chip for such applications as gas sensing, and the integrated photonics device can then be coupled with a wireless chip for Internet of Things applications.
The story is similar with autonomous vehicle systems that use light detection and ranging (LIDAR) technology. “These systems are huge, complicated, have a high power consumption, and have lots of lasers that are spinning around,” he says. “Now you can integrate that on a chip with no moving parts, and instead of one autonomous LIDAR system in a car, you could have 20 or 50 or 100 sprinkled throughout your vehicle”
Disruptive technology
Paniccia is uncomfortable referring to silicon photonics as a disruptive technology. He believes disruption is a term that is used too often.
Silicon photonics is a technology that opens up a lot of new possibilities, he says, as well as a new cost structure and the ability to produce components in large volume. But it doesn’t solve every problem.
The focus of the optical vendors is very much on cost. For markets such as the large-scale data centre, it is all about achieving the required performance at the right cost for the right application. Packaging and testing still account for a significant part of the device's overall cost and that cannot be forgotten, he says.
Paniccia thus expects silicon photonics to co-exist with the established technologies of indium phosphide and VCSELs in the near term.
“It is all about practical decisions based on price, performance and good-enough solutions,” he says, adding that silicon photonics has the opportunity to be the mass market solution and change the way one thinks about where photonics can be applied.
“Remember we are just at the beginning and it will be very exciting to see what the future holds.”
Tackling system design on a data centre scale
Interview 1: Andrew Rickman
Silicon photonics has been a recurring theme in the career of Andrew Rickman. First, as a researcher looking at the feasibility of silicon-based optical waveguides, then as founder of Bookham Technologies, and after that as a board member of silicon photonics start-up, Kotura.
Andrew Rickman
Now as CEO of start-up Rockley Photonics, his company is using silicon photonics alongside its custom ASIC and software to tackle a core problem in the data centre: how to connect more and more servers in a cost effective and scaleable way.
Origins
As a child, Rickman attended the Royal Institution Christmas Lectures given by Eric Laithwaite, a popular scientist who was also a professor of electrical engineering at Imperial College. As an undergraduate at Imperial, Rickman was reacquainted with Professor Laithwaite who kindled his interest in gyroscopes.
“I stumbled across a device called a fibre-optic gyroscope,” says Rickman. “Within that I could see people starting to use lithium niobate photonic circuits.” It was investigating the gyroscope design and how clever it was that made Rickman wonder whether the optical circuits of such a device could be made using silicon rather than exotic materials like lithium niobate.
“That is where the idea triggered, to look at the possibility of being able to make optical circuits in silicon,” he says.
If you try and force a photon into a space shorter than its wavelength, it behaves very badly
In the 1980s, few people had thought about silicon in such a context. That may seem strange today, he says, but silicon was not a promising candidate material. “It is not a direct band-gap material - it was not offering up the light source, and it did not have a big electro-optic effect like lithium niobate which was good for modulators,” he says. “And no one had demonstrated a low-loss single-mode waveguide.”
Rickman worked as a researcher at the University of Surrey’s physics department with such colleagues as Graham Reed to investigate whether the trillions of dollars invested in the manufacturing of silicon could also be used to benefit photonic circuits and in particular whether silicon could be used to make waveguides. “The fundamental thing one needed was a viable waveguide,” he says.
Rickman even wrote a paper with Richard Soref who was collaborating with the University of Surrey at the time. “Everyone would agree that Richard Soref is the founding father of the idea - the proposal of having a useful waveguide in silicon - which is the starting point,” says Rickman. It was the work at the University of Surrey, sponsored by Bookham which Rickman had by then founded, that demonstrated low-loss waveguides in silicon.
Fabrication challenges
Rickman argues that not having a background in CMOS processes has been a benefit. “I wasn’t dyed-in-the-wool-committed to CMOS-type electronics processing,” he says. “I looked upon silicon technology as a set of machine-shop processes for making things.”
Looking at CMOS processing completely afresh and designing circuits optimised for photonics yielded Bookham a great number of high-performance products, he says. In contrast, the industry’s thrust has been very much a semiconductor CMOS-focused one. “People became interested in photonics because they just naturally thought it was going to be important in silicon, to perpetuate Moore’s law,” says Rickman.
You can use the structures and much of the CMOS processes to make optical waveguides, he says, but the problem is you create small structures - sub-micron - that guide light poorly. “If you try and force a photon into a space shorter than its wavelength, it behaves very badly,” he says. “In microelectronics, an electron has got a wavelength that is one hundred times smaller that the features it is using.”
The results include light being sensitive to interface roughness and to the manufacturing tolerances - the width, hight and composition of the waveguide. “At least an order of magnitude more difficult to control that the best processes that exist,” says Rickman.
“Our [Rockley’s] waveguides are one thousand times more relaxed to produce than the competitors’ smaller ones,” he says. “From a process point of view, we don’t need the latest CMOS node, we are more a MEMS process.”
If you take control of enough of the system problem, and you are not dictated to in terms of what MSA or what standard that component must fit into, and you are not competing in this brutal transceiver market, then that is when you can optimise the utilisation of silicon photonics
Rickman stresses that small waveguides do have merits - they go round tighter bends, and their smaller-dimensioned junctions make for higher-speed components. But using very large features solves the ‘fibre connectivity problem’, and Rockley has come up with its own solutions to achieve higher-speed devices and dense designs.
“Bookham was very strong in passive optics and micro-engineered features,” says Rickman. “We have taken that experience and designed a process that has all the advantages of a smaller process - speed and compactness - as well as all the benefits of a larger technology: the multiplexing and demultiplexing for doing dense WDM, and we can make a chip that already has a connector on it.”
Playing to silicon photonics’ strengths
Rickman believes that silicon photonics is a significant technological development: “It is a paradigm shift; it is not a linear improvement”. But what is key is how silicon photonics is applied and the problem it is addressing.
To make an optical component for an interface standard or a transceiver MSA using silicon photonics, or to use it as an add-on to semiconductors - a ’band-aid” – to prolong Moore’s law, is to undersell its full potential. Instead, he recommends using silicon photonics as one element - albeit an important one - in an array of technologies to tackle system-scale issues.
“If you take control of enough of the system problem, and you are not dictated to in terms of what MSA or what standard that component must fit into, and you are not competing in this brutal transceiver market, then that is when you can optimise the utilisation of silicon photonics,” says Rickman. “And that is what we are doing.” In other words, taking control of the environment that the silicon sits in.
It [silicon photonics] is a paradigm shift; it is not a linear improvement
Rockley’s team has been structured with the view to tackle the system-scale problem of interconnecting servers in the data centre. Its team comprises computer scientists, CMOS designers - digital and analogue - and silicon photonics experts.
Knowing what can be done with the technologies and organising them allows the problems caused by the ‘exhaustion of Moore’s law’ and the input/output (I/O) issues that result to be overcome. “Not how you apply one technology to make up for the problems in another technology,” says Rickman.
The ending of Moore’s law
Moore’s law continues to deliver a doubling of transistors every two years but the associated scaling benefits like the halving of power consumed per transistor no longer apply. As a result, while Moore’s law continues to grow gate count that drives greater computation, the overall power consumption is no longer constant.
Rickman also points out that the I/O - the number of connections on and off a chip - are not doubling with transistor count. “I/O may be going from 25 gigabit to 50 gigabit using PAM–4 but there are many challenges and the technology has yet to be demonstrated,” he says.
The challenge facing the industry is that increasing the I/O rate inevitably increases power consumption. “As power consumption goes up, it also equates to cost,” says Rickman. Clearly that is unwelcome and adds cost, he says, but that is not the only issue. As power goes up, you cannot fully benefit from the doubling transistor counts, so things cannot be packed more densely.
“You are running into to the end of Moore’s law and you don’t get the benefit of reducing space and cost because you’ve got to bolt on all these other things as it is very difficult to get all these signals off-chip,” he says.
This is where tackling the system as a whole comes in. You can look at microelectronics in isolation and use silicon photonics for chip-to-chip communications across a printed circuit board to reduce the electrical losses through the copper traces. “A good thing to do,” stresses Rickman. Or you can address, as Rockley aims to do, Moore’s law and the I/O limitations within a complete system the size of the data centre that links hundred of thousands of computers. “Not the same way you’d solve an individual problem in an individual device,” says Rickman.
Rockley Photonics
Rockley Photonics has already demonstrated all the basic elements of its design. “That has gone very well,” says Rickman.
The start-up has stated its switch design uses silicon photonics for optical switching and that the company is developing an accompanying controller ASIC. It has also developed a switching protocol to run on the hardware. Rockley’s silicon photonics design performs multiplexing and demultiplexing, suggesting that dense WDM is being used as well as optical switching.
Rockley is a fabless semiconductor company and will not be building systems. Partly, it is because it is addressing the data centre and the market has evolved in a different way to telecoms. For the data centre, there are established switch vendors and white-box manufacturers. As such, Rockley will provide its chipset-based reference design, its architecture IP and the software stack for its customers. “Then, working with the customer contract manufacturer, we will implement the line cards and the fabric cards in the format that the particular customer wants,” says Rickman.
The resulting system is designed as a drop-in replacement for the large-scale data centre players’ switches they haver already deployed, yet will be cheaper, more compact and consume less power, says Rockley.
“They [the data centre operators] can scale the way they do at the moment, or they can scale with our topology,” says Rickman.
The start-up expects to finally unveil its technology by the year end.
