counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in VRAN (2)

Thursday
May262022

The quiet progress of Network Functions Virtualisation 

Network Functions Virtualisation (NFV) is a term less often heard these days.

Yet the technology framework that kickstarted a decade of network transformation by the telecom operators continues to progress.

Bruno Chatras

The working body specifying NFV, the European Telecommunications Standards Institute's (ETSI) Industry Specification Group (ISG) Network Functions Virtualisation (NFV), is working on the latest releases of the architecture.

The releases add AI and machine learning, intent-based management, power savings, and virtual radio access network (VRAN) support.

ETSI is also shortening the time between NFV releases.

“NFV is quite a simple concept but turning the concept into reality in service providers’ networks is challenging,” says Bruno Chatras, ETSI’s ISG NFV Chairman and senior standardisation manager at Orange Innovation. “There are many hidden issues, and the more you deploy NFV solutions, the more issues you find that need to be addressed via standardisation.”

Click to read more ...

Friday
Dec172021

Marvell's 50G PAM-4 DSP for 5G optical fronthaul

  • Marvell has announced the first 50-gigabit 4-level pulse-amplitude modulation (PAM-4) physical layer (PHY) for 5G fronthaul.
  • The chip completes Marvell’s comprehensive portfolio for 5G radio access network (RAN) and x-haul (fronthaul, midhaul and backhaul).

Marvell's wireless portfolio of ICs. Source: Marvell.

Marvell has announced what it claims is an industry-first: a 50-gigabit PHY for the 5G fronthaul market.

Dubbed the AtlasOne, the PAM-4 PHY chip also integrates the laser driver. Marvell claims this is another first: implementing the directly modulated laser (DML) driver in CMOS.

“The common thinking in the industry has been that you couldn’t do a DML driver in CMOS due to the current requirements,” says Matt Bolig, director, product marketing, optical connectivity at Marvell. “What we have shown is that we can build that into CMOS.”

Click to read more ...