counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in serdes (2)

Friday
Jul292022

ADCs key for high baud-rate coherent systems

Increasing the baud rate of coherent modems benefits optical transport. The higher the baud rate the more data can be sent on a wavelength, reducing the cost-per-bit of traffic.

But engineers have become so good at designing coherent systems that they are now approaching the Shannon limit. 

Tomislav Drenski

At the OFC show earlier this year, Ciena showcased a coherent module operating at 107 gigabaud (GBd). And last year, Acacia, now part of Cisco, announced its next-generation 1.2 terabits-per-second (Tbps) wavelength coherent module operating at up to 140GBd

The industry believes that increasing the baud rate to 240+GBd is possible, but each new symbol-rate hike is challenging.

All the components in a modem - the coherent DSP and its digital-to-analogue (DAC) and analogue-to-digital (ADC) converters, the optics, and the analogue drive circuitry - must scale in lockstep.

Click to read more ...

Wednesday
Jun292016

FPGAs with 56-gigabit transceivers set for 2017

Xilinx is expected to ship its first FPGAs featuring 56-gigabit transceivers next year. 

The company demonstrated a 56-gigabit transceiver using 4-level pulse-amplitude modulation (PAM-4) at the recent OFC show. The 56-gigabit transceiver, also referred to as a serialiser-deserialiser (serdes), was shown successfully working over backplane specified for 25-gigabit signalling only.

Gilles GarciaXilinx's 56-gigabit serdes is implemented using a 16nm CMOS process node but the first FPGAs featuring the design will be made using a 7nm process. Gilles Garcia says the choice of 7nm CMOS is solely a business decision and not a technical one.

”Optical module [makers] will take another year to make something decent using PAM-4," says Garcia, Xilinx's director marketing and business development, wired communications. "Our 7nm FPGAs will follow very soon afterwards.”

Click to read more ...