counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in Hot Chips (2)

Friday
Jul142023

Using light to connect an AI processor’s cores

Lightelligence is using silicon photonics to connect 64 cores of its AI processor. But the company has bigger ambitions for its optical network-on-chip technology 

Lightelligence has unveiled its optical network-on-chip designed to scale multiprocessor designs.

The start-up’s first product showcasing the technology is the Hummingbird, a system-in-package that combines Lightelligence’s 64-core artificial intelligence (AI) processor and a silicon photonics chip linking the processor’s cores.

Maurice Steinman

A key issue impeding the scaling of computing resources is the ‘memory wall’ which refers to the growing gap between processor and memory speeds, causing processors to be idle as they wait for data to crunch.

Click to read more ...

Wednesday
Sep112019

Ayar Labs and Intel add optical input-output to an FPGA 

Start-up Ayar Labs, working with Intel, has interfaced its TeraPHY optical chiplet to the chip giant’s Stratix10 FPGA.

Hugo SalehIntel has teamed with several partners in addition to Ayar Labs for its FPGA-based silicon-in-package design, part of the US Defense Advanced Research Projects Agency’s (DARPA) project.  

Ayar Labs used the Hot Chips conference, held in Palo Alto, California in August, to detail its first TeraPHY chiplet product and its interface to the high-end FPGA.  

Origins

Ayar Labs was established to commercialise research that originated at MIT. The MIT team worked on integrating both photonics and electronics on a single die without changing the CMOS process.

The start-up has developed such building-block optical components in CMOS as a vertical coupler grating and a micro-ring resonator for modulation, while the electronic circuitry can be used to control and stabilise the ring resonators operation.  

Ayar Labs has also developed an external laser source that provides an external light source that can power up to 256 optical channels, each operating at either 16 to 32 gigabits-per-second (Gbps).

Click to read more ...