NeoPhotonics ups the baud rate for line and client optics
- Neophotonics’ 64 gigabaud optical components are now being designed into optical transmission systems. The components enable up to 600 gigabits per wavelength and 1.2 terabits using a dual-wavelength transponder.
- The company’s high-end transponder that uses Ciena’s WaveLogic Ai coherent digital signal processor (DSP) is now shipping.
- NeoPhotonic is also showcasing its 53 gigabaud components for client-side pluggable optics capable of 100-gigabit wavelengths at the current European Conference on Optical Communication (ECOC) show being held in Rome.
NeoPhotonics says its family of 64 gigabaud (Gbaud) optical components are being incorporated within next-generation optical transmission platforms.
The 64Gbaud components include a micro intradyne coherent receiver (micro-ICR), a micro integrable tunable laser assembly (micro-ITLA) and a coherent driver modulator (CDM).
The micro-ICR and micro-ITLA are the Optical Internetworking Forum’s (OIF) specification, while the CDM is currently being specified.
“Three major customers have selected to use all three [64Gbaud components] and several others are using a subset of those,” says Ferris Lipscomb, vice president of marketing at NeoPhotonics.
NeoPhotonics also unveiled and demonstrated two smaller 64Gbaud component designs at the OFC show held in March. The devices - a coherent optical sub-assembly (COSA) and a nano-ITLA - are aimed at 400-gigabit coherent pluggable modules as well as compact line-card designs.
“These [two compact components] continue to be developed as well,” says Lipscomb.
Baud rate and modulation
The current 100-gigabit coherent transmission uses polarisation-multiplexing, quadrature phase-shift keying (PM-QPSK) modulation operating at 32 gigabaud. The 100 gigabits-per-second (Gbps) data rate is achieved using four bits per symbol and a symbol rate of 32Gbaud.
Optical designers use two approaches to increase the wavelength’s data rate beyond 100Gbps. One approach is to increase the modulation scheme beyond QPSK using 16-ary quadrature amplitude modulation (16-QAM) or 64-QAM, the other is to increase the baud rate.
“The baud rate is the on-off rate as opposed to the bit rate. That is because you are packing more bits in there than the on-off supports,” says Lipscomb. “But if you double the on-off rate, you double the number of bits.”
Doubling the baud rate from 32Gbaud to 64Gbaud achieves just while using 64-QAM trebles the data sent per symbol compared to 100-gigabit PM-QSPK. Combining the two - 64Gbaud and 64-QAM - creates the 600 gigabits per wavelength.
A higher baud rate also has a reach advantage, says Lipscomb, with its lower noise. “For longer distances, increasing the baud rate is better.”
But doubling the baud rate requires more capable DSPs to interpret things at twice the rate. “And such DSPs now exist, operating at 64Gbaud and 64-QAM,” he says.
Three major customers have selected to use all three [64Gbaud components] and several others are using a subset of those
Coherent components
NeoPhotonics’ 64Gbaud optical components are suitable for line cards, fixed-packaged transponders, 1-rack-unit modular platforms used for data centre interconnect and the CFP2 pluggable form factor.
For data centre interconnect using 600-gigabits-per-wavelength transmissions, the distance achieved is up to 100km. For longer distances, the 64Gbaud components achieve metro-regional reaches at 400Gbps, and 2,000km for long-haul at 200Gbps.
But to fit within the most demanding pluggable form factors such as the OSFP and QSFP-DD, smaller componentry is required. This is what the coherent optical sub-assembly (COSA) and nano-ITLA are designed to address. The COSA combines the coherent modular driver and the ICR in a single gold-box package that is no larger than the individual 64Gbaud micro-ICR and CDM packages.
“There is a lot of interest in 400-gigabit applications for a CFP2, and in that form factor you can use the separate components,” says Lipscomb. “But for data centre interconnect, you want to increase the density as much as possible so going to the smaller OSPF or QSFP-DD requires another generation of [component] shrinking.”
NeoPhotonics says there are two main approaches. One, and what NeoPhotonics has done with the nano-ITLA and COSA, is to separate the laser from the remaining circuitry such that two components are needed overall. A benefit of a separate laser is also lower noise. “But the ultimate approach would be to put all three in one gold box,” says Lipscomb.
For data centre interconnect, you want to increase the density as much as possible so going to the smaller OSPF or QSFP-DD requires another generation of [component] shrinking
Both approaches are accommodated as part of the OIF’s Integrated Coherent Transmitter-Receiver Optical Sub-Assembly (IC-TROSA) project.
Another challenge to achieving coherent designs such as the emerging 400ZR standard using the OSFP or QSFP-DD is accommodating the DSP with the optics while meeting the modules’ demanding power constraints. This requires a 7nm CMOS DSP and first samples are expected by year-end with limited production occurring towards the end of 2019. Volume production of coherent OSFP and QSFP-DD modules are expected in 2020 or even 2021, says Lipscomb.
100G client-side wavelengths
NeoPhotonics also used the OFC show last March to detail its 53Gbaud components for client-side pluggables that are 100-gigabit single-wavelength and four-wavelength 400-gigabit designs. Samples of these have now been delivered to customers and are part of demonstrations at ECOC this week.
The components include an electro-absorption modulated laser (EML) and driver for the transmitter, and photodetectors and trans-impedance amplifiers for the receiver path. The 53Gbaud EML can operate uncooled, is non-hermetic and is aimed for use with OSFP and QSFP-DD modules.
To achieve a 100-gigabit wavelength, 4-level pulse-amplitude modulation (PAM-4) is used and that requires an advanced DSP. Such PAM-4 DSPs will only be available early next year, says NeoPhotonics.
The first 400-gigabit modules using 100-gigabit wavelengths will gain momentum by the end of 2019 with volume production in 2020, says Lipscomb.
The various 8-wavelength implementations such as the IEEE-defined 2km 400GBASE-FR8 and 10km 400GBASE-LR8 are used when data centre operators must have 400-gigabit client interfaces.
The adoption of 100-gigabit single-wavelength implementations of 400 gigabits, in contrast, will be adopted when it becomes cheaper on a cost-per-bit basis, says Lipscomb: “It [100-gigabit single-wavelength-based modules] will be a general replacement rather than a breaking of bottlenecks.”
NeoPhotonics is also making available its DFB laser technology for silicon-photonics-based modules such as the 2km 400G-FR4, as well as the 100-gigabit single-wavelength DR1 and the parallel-fibre 400-gigabit DR4 standards.
WaveLogic AI transponder
NeoPhotonics has revealed it is shipping its first module using Ciena’s WaveLogic Ai coherent DSP. “We are shipping in modest volumes right now,” says Lipscomb.
The company is one of three module makers, the others being Lumentum and Oclaro, that signed an agreement with Ciena to use of its flagship WaveLogic Ai DSP for their coherent module designs.
Lipscomb describes the market for the module as a niche given its high-end optical performance, what he describes as a fully capable, multi-haul transponder. “It has lots of features and a lot of expense too,” he says. “It is applied to specific cases where long distance is needed; it can go 12,000km if you need it to.”
The agreement with Ciena also includes the option to use future Ciena DSPs. “Nothing is announced yet and so we will have to see how that all plays out.”
Reader Comments