The email sent will contain a link to this article, the article title, and an article excerpt (if available). For security reasons, your IP address will also be included in the sent email.
NeoPhotonics has announced an integrated coherent receiver that will enable 600-gigabit optical transmission using a single wavelength. A transmission capacity of 48 terabits over the fibre’s C-band is then possible using 80 such channels.

NeoPhotonics’ micro integrated coherent receiver operates at 64 gigabaud, twice the symbol rate of deployed 100-gigabit optical transport systems and was detailed at the recent ECOC show.
Current 100 gigabit-per-second (Gbps) coherent systems use polarisation-multiplexing, quadrature phase-shift keying (PM-QPSK) modulation operating at 32 gigabaud. “That is how you get four bits [per symbol],” says Ferris Lipscomb, vice president of marketing at NeoPhotonics.
Optical designers have two approaches to increase the data transmitted on a wavelength: they can use increasingly complex modulation schemes - such as 16 quadrature amplitude modulation (16-QAM) or 64-QAM - and they can increase the baud rate. “You double the baud rate, you double the transmission capacity,” says Lipscomb. “And using 64-QAM and 64 gigabaud, you can go to 600 gigabit per channel; of course when you do that, you reduce the reach.”
The move to the higher 64 gigabaud symbol rate will help Internet content providers increase capacity between their large-scale data centres. Typical transmission distances between sites are relatively short, up to 100km.